
Smojo is a new programming language for Data Science
and Artificial Intelligence. It is fast, easy to learn and use.

As you will see, Smojo is cloud-first and comes bundled
with a community of users you can reach out to for help,
share code with and get new ideas.

Using the Editor
To begin, point your web browser to: https://smojo.ai/
editor .You should see a layout similar to Figure 1 below.

There are 4 main sections:

1. The Editor Panel is where you do all your coding.

2. The Output Panel is a multi-purpose panel to list
files, show documentation and display the output of
your program.

3. The Top Menu shows several words (Learn, Template,
Community, Smojo, Login and the gear icon), each of
which will lead you to a new page of content. We’ll
come to these in due course.

1

The layout on Figure 1 will differ
for small screens on phones and
tablets. In these, the Editor Panel
is at the top, and the Editor
Buttons and Output Panel at the
bottom.

The Top Menu is hidden on small
screens. You need to click on a
blue arrow icon to reveal this
menu.

The Editor
Your first steps with Smojo

Figure 1 - the layout of the Smojo Editor.

https://smojo.ai/editor
https://smojo.ai/editor

Lastly, there are the Editor Buttons, which you will
frequently use when programming.

File Explorer - when you click it, will display your
files and folders in the right Output Panel.

 Run Script - which you click on to run the code
displayed on the Editor Panel.

 Save File - when clicked, saves the code currently
displayed on the Editor Panel.

New Folder - creates a new folder in which you
may save files.

Logging In
Your first step to using Smojo is to login:

• In the Top Menu, click Login.

• A form with two input fields and an OK button should
appear in the Output Panel.

• Enter your username in the field provided. Use only
lowercase letters.

• Enter your password in the second field

• Click OK

If you entered your credentials correctly, you should be
logged in and ready to go!

2

Figure 2: The important Editor Buttons

If you’re using a
smartphone or tablet, the
Login menu may not
appear, you have to click
the blue “down arrow”
button (shown on the left)
which will reveal the Top
Menu for you to select
from.

Your First Program
Click the Add Tab icon on the Editor Panel as in Figure 3
below. This will open a fresh tab where you can begin to
code.

In this tab on the Editor Panel, type it in the following
code:

“Hello World” .

There are several points to pay attention to in this short
program:

• Throughout this book, we will use the convention of
using red letters for code.

• If you’re reading this book on a PDF, do not copy-paste
from the PDF, because it frequently uses the wrong
symbol for double-quote. Manually type in the program
instead.

• In the program, note the space between the last double
quote and the period . Spaces are important in Smojo.

If all is well, you should see something similar to Figure 4
below:

The top sections in purple are called comments, and
these are important notes to programmers reading your
code, but are ignored by Smojo itself.

3

Figure 3: The add tab icon

In Smojo, comments are created by a preceding backslash
\ with a space. This renders all anything to the right as a
comment.

Our actual program in Figure 4 is on line 10. The actual
line number may be different for you. Notice how the text
is coloured differently from the period. That’s a helpful
and important distinction:

• The text “Hello World” is printed in green on the
Editor Panel. It is considered a literal , meaning its
value is what it says. For example, 56 is a number and it
is also considered a literal.

• The period . is considered a word or action. Its value is
the result of it performing an action.

• In Smojo, spaces are important, so put a space between
the literal “Hello World” and the period .

To execute this program, click the Run Script button.
You should see the program’s output appear on the right
Output Panel as in Figure 5:

So, Figure 5 says that the result of running the program is
the Hello World displayed to you, followed by ok.

The ok tells you that your program ended normally. All
successful programs in Smojo end in ok.

4

Figure 4: The Hello World program

Quiz 1.0

1.0.0: What happens if you delete the space between
the last double quote and the period?

1.0.1: What happened if the literal “Hello
World” and the period word . are on different
lines?

Experiment with these changes!

Left to Right
Smojo code is executed from top to bottom, and left to
right sequentially.

Words act on whatever precedes them on the left.

For example, in our Hello World program, to the left of
the period . is the literal “Hello World” , which acts as
the input to the period.

The period doesn’t create any output on its right since its
action is to print to screen. However most other words do
have an output, which is implicitly placed on the right.

Take the following program:

1 2 +

This means that 1 and 2 act as inputs to +, since they are
on the left of it.

5

Figure 5: Output of the Hello World program

Quiz 1.1

1.1.0: Copy this program into a new tab and try
running it. What output do you observe? What
output did you expect?

1.1.1: Try adding a period . to the right of +, making
sure to insert a space between them. Run the
program. What output do you observe? Does this
match your expectations?

The left-to-right rule is universal in Smojo. This means
that we must write

1 2 + \ works!

instead of the more natural

1 + 2 \ won’t work

which will not work. Recall, the items in purple mean
comments, which are ignored by Smojo.

In exchange for this inconvenience however, Smojo offers
us surprising power in writing concise programs, which I
hope you will see in later chapters.

Importance of Spaces

One immediate benefit of the left-to-right rule is that
there is no need for parentheses in Smojo. Instead, spaces
are important in Smojo. For example, this code won’t
work:

1 2+ . \ won’t work

because Smojo needs a space between the literal 2 and the
word +

1 2 + . \ works!

In the last example above, 1 2 + .

• the input of the + is to the left of it, ie, 1 and 2.
6

• the + outputs 3, which is put on its right.

• the input of the period . is to the left of it, ie, the
output of + which is 3

A Longer Program
So far, we’ve written tiny programs - each just one line
long! Let’s try something longer and a little more
challenging.

How would you find the average of two numbers?

1. First add them

2. The divide by 2

We already know that + adds 2 numbers on the left. 2 /
divides the leftmost number with the number 2. So,
putting them together, the fragment

+ 2 /

acts like an average operation, since it adds any two
numbers on its leftmost side and outputs the average on
the rightmost side. For example, run this 3-line program:s

2 4

+ 2 /

.

You should see 3 ok being displayed in the Output Panel.
Let’s break it down line by line:

• Recall that Smojo does things in sequence, top to
bottom, left to right. This mean that in this 3-line
program, the first line 2 4 is run first. Since both 2 and
4 are literals, ie their values are themselves, then the
result is also two values, 2 4 as input to whatever
follows.

• On the second line, + adds 2 and 4 since they precede it,
and outputs the result, 6 to the right.

7

Don’t confuse the backslash \ which

starts a comment with the slash /
which is an integer divide.

• 2 acts as its own value, so the values on the left are now
6 followed by 2.

• / takes the 6 and 2 , performing the division, resulting
in 3 on the right of it.

• finally, . takes the 3 on its left and prints 3 to screen. It
produces no output.

• there are no longer any operations so Smojo prints ok
and comes to a halt.

Take time to understand each step carefully. Don’t
move on until you have thoroughly understood
what is happening.

It may be that you may be wondering if anything
interesting or useful can be done this way. Shelve these
concerns for now and focus on how Smojo runs a program.
The benefit of Smojo’s way of doing things will be very
clear later on. But you have to grasp the details first.

New Words
What if we want to take the average two pairs of numbers,
then subtract them? Say 2 4 and 6 8 ? How would we
program this with what we’ve learnt thus far?

Here’s one possibility:

2 4 + 2 /

6 8 + 2 /

- .

This is program is easy to write but hard to read. Easy to
write since we already know + 2 / is the average, but
hard to read since we need to figure that our ourselves.

It would be much better if we could somehow name the
fragment + 2 / as average. Then, we might be able to
do:

2 4 average

6 8 average

- .

8

This code is easy to both write and read. Easy to read since
we know what the English word average means.

We can “package” code fragments into new words with the
help of the words : called “colon” and ; called “semi-
colon” like so:

: average

	 + 2 /

;

This means we can now use average like any other
Smojo word. Figure 6 shows the full program.

The words : and ; are not punctuation (remember, in
Smojo, there is only Words or Literals). The word :
begins the definition of a new word while the word ;
completes it.

Quiz 1.2

1.2.0: Write and run the program in Figure 6. Do
you get the expected answer?

1.2.1: Amend your program by replacing 4 2
average with 2 3 average. What do you
expect the answer to be now? Run the program with
the changed values. Do you get the expected answer?
Now try replacing / with /. and - with -. then
rerun again. Now do you get the expected answer
now? - + / * are integer subtraction, addition,

9

Figure 6: Defining a new word average

division and multiplication. -. +. /. and *. are
their real-number counterparts.

*1.2.2: How would you write a new word diff-
average that finds the difference of the average of
two pairs of numbers? Eg:

4 3 2 1 diff-average .

should display 2.o ok Hint: reuse the average
word. Write out your code and test.

Learning Points

• You’ve briefly learned about the different parts of the
Smojo Editor.

• You understand that Smojo processes its data from left
to right (and top to bottom).

• You are able to create new words using : and ;

• Most Smojo words are often just 2 - 3 lines of code,
very rarely more than 5 lines long. This rule makes
Smojo easier to debug.

• Always thoroughly test your code as you program.
Don't be tempted to code a lot all at once. Code a bit
then test. This will save you a lot of time and make you
a productive Smojo programmer!

• Refer to the Appendix on Math Words (below) to see
what words are available to you for basic mathematical
and logical operations.

Answers to Quizzes

Quiz 1.0

1.0.0: The program runs normally. This is a special
case and only works for text within double quotes.

10

1.0.1: The program runs correctly and shows Hello
World. So, it doesn’t matter if things are on a
different line.

Quiz 1.1

1.1.0: The result is just ok. You might have expected
3 ok to be shown instead. But the output 3 needs to
be explicitly displayed using period .

1.1.1: 3 ok is shown. The period . is needed to
display the output.

Quiz 1.2

1.2.0: The program displays -4 ok. Yes, this is
expected because the average of 2 and 4 is 3 and the
average of 6 and 8 is 7. 3 7 - is the same as
subtracting 7 from 3, which results in -4.

1.2.1: The program shows -5 ok. This is
unexpected, because the average of 2 and 3 is 2.5 and
2.5 - 7 = -4.5 not -5.

After making the change of - to -. and / to /. the
resulting code is:

: average

 + 2 /.

;

2 3 average

6 8 average

-. .
If this new program is run, the result is -4.5 ok as
expected.

So, there is a big difference between integer
arithmetic using + - * / and real arithmetic using
+. -. *. and /. Integer arithmetic will cause
intermediate answers like 1.5 to be rounded to
become integers (2 in this case)

11

1.2.2: Here’s a solution:

: average (n n — n)

 + 2 /.

;

: diff-average (n n n n — n)

	 average { b }

 average { a }

 a b -.

;

4 3 2 1 diff-average .

When this program is run, it will show 2.0 ok. The
program needs some explanation:

• The items in purple eg (n n — n) are special
comments called stack comments. Like ordinary
comments, they are also ignored by Smojo, but
they are very helpful to us: the n n on the left
indicates to us that average needs 2 inputs (n
means number) on the left. the single n after the
dash — means that the output on the right is a
single number.

• The items in braces eg { b } and { a } means
that we are giving the intermediate results a
temporary name. So, average { a } means
calculate the average of the 2 numbers on the left
then name the result a. We do that for the second
average also calling it b.

• The last step is to recall the named results a and b
then subtract them.

12

Appendix: Math Words
Word Action

+ - * / = Used to operate between
integers only. If a real number is
encountered, it is truncated --
fractional part is discarded. For
example,
1 2 +

will give 3 as expected, but
1 2.8 +
will also give 3, since 2.8 is
truncated. The equal sign is used
to test if two integers on the
stack are equal.

+. -. *. /. =. As above, but these can operate
on real numbers. No truncation
is performed.

> >= < <= Inequality tests. These work on
both integers and reals. The
result is a boolean (true or
false) on the stack.

1 2.2 < .

displays
true ok

FLOOR Displays the floor of a number,
which is the closest integer
lower than the given number.
For example, 3.5 FLOOR is
3.0

CEIL Displays the ceiling of a number,
which is the closest integer
higher than the given number.
For example, 4.1 CEIL is 5.0

ROUND Rounds off to the nearest
integer. For example,
4.3 ROUND is 4 and
4.5 ROUND is 5

MIN

MAX

Minimum and Maximum of two
numbers. For example,
0 3 min is 0.0 and
4 5.1 max is 5.1

13

^ Exponentiation.

2 3 ^ becomes 8.0

TAN

SIN

COS

Usual trigonometric functions.
The inputs are expected to be in
radians.

ATAN2 The special arctangent, very
useful for computing directions
(in radians) of 2D-vectors. For
example,
1 1 atan2 to-deg .

will display 45.o , meaning a
vector (1,1) has angle 45 degrees
to the horizontal. to-deg is
used to convert the answer in
radians into degrees.

#e

#pi

EXP

LN

Natural exponentiation and
natural logarithms.

LOG10 Logarithms base 10.

TO-DEG

TO-RADIANS

Converts angles to degrees or
radians.

MOD

FMOD

Integer modulus and real
modulus. Use FMOD if either
operand is a real number.

ABS The absolute value.

TRUE

FALSE

Puts the logical values true and
false on the stack.

OR Logical OR. For example,
true false OR is true.

AND Logical AND. For example,
true false AND is false.

NOT Logical NOT. For example,
true NOT is false

Word Action

Constant values of e and
respectively.

π

14

	The Editor
	Your first steps with Smojo
	Using the Editor
	Logging In
	Your First Program
	Left to Right
	Importance of Spaces
	A Longer Program
	New Words
	Learning Points
	Answers to Quizzes
	Appendix: Math Words

