
One of the key ideas about Smojo is that it implicitly uses 
a data stack to direct input and output into and out of 
words.

WARNING: If you have used other programming 
languages, this concept will probably be unfamiliar to you. 
But is important to understand if you want to program 
Smojo effectively.

What is a Stack?
A stack is something that can store information or data -  
numbers, text or other kinds of information. 

You can just do two things to a stack:

• You can push an item onto it.

• You can take an item off of it. This is called popping an 
item from the stack. Popping an item removes it from 
the stack.

Last in First Out 

There is a crucial Rule of Stack that governs which items 
are popped off the stack:

• The last item pushed onto the stack is the first item 
that may be popped from it. 

• This is called the “last-in-first-out” rule or LIFO for 
short. 

• You cannot select which item to pop from the stack. 
That choice is rigidly made using the LIFO rule. 

1

The Data Stack
Data in and out of your programs 

Stacks are an important Data 
Structure used in writing 
software. In Smojo, there is one 
data stack used internally to 
shuttle information in and out of 
words 



Stack Simulation 

Let’s see how this works in practice. Let’s say you pushed 
two items in sequence, first the number 35 then “abc” 
then the text “Hey”. (See Figure 1)

If you popped the stack now, what item do you expect to 
get? 

Here’s how to reason about it:

a. The last item pushed onto the stack is the text “Hey”

b. Therefore, using the LIFO rule, it should be the first 
item popped out of the stack (Figure 2)

c. If it is popped off the only remaining items are 35 and 
“abc” 

d. If the stack is popped again, the item “abc” is 
obtained. The stack now contains just the number 35. 
(Figure 3)

e. If the stack is popped a third time, then the sole item, 
35 is obtained. At this point, the stack is empty.

f. Popping the stack a forth time will result in an error, 
since they stack is already empty.

Go through these steps in your mind until it is completely 
clear. 

Smojo’s Data Stack
Now that you understand what a stack is, let’s see how it 
applies specifically to Smojo. Key concept: 

“Every data item in Smojo is either 
being implicitly pushed on to a single 
data stack or implicitly popped from 
it.”
Let’s unpack what this means. Take the following program: 

 1 2 3 + .  

2

Figure 1: A pictorial 
representation of 
our stack. Items are 
always pushed 
onto the top of the 
stack. 

Figure 2: An item 
is popped from 
the stack the first 
time. 

Figure 3: An item is 
popped from the 
stack the second 
time. 



At first, the data stack is empty. 

Recall that Smojo reads your program from left to right. 
The first thing in this program is the literal 1 , whose 
action is to push the number 1 onto the stack. So the 
stack at this point contains just one item, the number 1 
(Figure 4). 

Note that there is a real difference between the literal 1 
and the number 1:

• The literal 1 has an action associated with it - it pushes 
the number 1 onto the stack. 

• The number 1 represents a numerical value. It does not 
have an action attached to it. 

The second item Smojo sees is the literal 2. This pushes 
the number 2 onto the data stack. This results in two 
items on the data stack - 1 at the bottom and 2 on top 
(Figure 5). 

A similar thing happens for the next literal, 3. Now the 
stack is 1 2 3, with 1 on the bottom and 3 on the top.

The next item is +, which is a word, whose action is to pop 
two items from the stack, add them then push the result 
onto the data stack. 

These top two items are the numbers 2 and 3, so they are 
popped by +, which also adds together to give the number 
5 which is promptly pushed onto the data stack (Figure 6).

The stack now contains just two items: 1 5 

Lastly, the period . word pops the data stack and prints 
the result. Popping the stack 1 5 yields the number 5 
(which is displayed to you) and leaves behind the number 1 
on the stack.

The program ends with a single item, 1 on the data stack.

3

“A literal is 
something that 
pushes its value onto 
the data stack”

Figure 4: The action 

of the literal 1 is to 
push the number 1 
onto the data stack.

Figure 5: The 
action of the literal 

2 is to push the 
number 2 onto the 
data stack.

Figure 6: The action of 

the word + is to pop the 
top two items, add them 
and push the result onto 
the data stack.



Quiz 2.0 

2.0.0: Analyse the program: 

1 2 3 + + .  

What does it do? Does it leave anything on the stack?

2.0.1: Is the program:

1 2 + 3 + .  

different from the one in 2.0.0? Explain your answer. 

Words and the Data Stack
Let’s analyse a longer program: 

1 : greet ( “s” — )  

2 “Hello” . . cr  

3 ;  

4 “Joel” greet 

The line numbers 1 to 4 are shown on the left for 
convenience, but they are not part of the program. 

The code in purple, ie ( “s” — ) is a stack comment. 
It’s a comment, meaning that it is actually ignored 
completely by Smojo. However, it is useful to 
programmers: this one tells us that the input into greet 
is a single string/text, and that it outputs nothing. 

The other thing that you need to see is that this program 
is written in two modes. The section: 

: greet ( “s” — )  

 “Hello” . . cr  

; 

4



is mainly in compilation mode. This means that 
although Smojo reads from left to right, words like . and 
cr on the second line aren’t immediately executed. 
Instead, a new word is being defined. In this case the word 
greet. 

The second section is: 

“Joel” greet 

which is in interpretation mode. This part is indeed 
executed immediately as it is being read. 

For now, simply accept that anything between : and ; is in 
compilation mode — ie, Smojo is defining a new word. 

NOTE: The situation is actually a lot more complex. As a 
programmer you are given fine control over these modes, 
which is important in metaprogramming. But more of this 
in later chapters.

You may interleave compilation mode code with 
interpretation mode code in your programs. But it’s usually 
a good idea to make all your word definitions first before 
you use interpretation mode. But there are many 
exceptions to this rule.

With that out of the way, let’s analyse the program!

During the definition of greet the data stack is never 
used, because everything is compiled (ie, added into) the 
definition of greet. So the data stack remains empty 
throughout this compilation mode stage. 

“Joel” is a string literal which pushes the string “Joel” 
onto the data stack. 

greet executes the code compiled within it, ie: 

“Hello” . . cr  

“Hello” pushes the string “Hello” onto the stack. The 
stack now contains: “Joel” “Hello” 

5



The first . pops “Hello” and prints it. The second . 
pops “Joel” and prints it (Figure 7). The cr prints the 
new line.

The program then ends, with nothing on the stack. 

The key insight here is that the usage of greet (on line 4) 

“Joel” greet  

is equivalent to: 

“Joel” “Hello” . . cr  

Quiz 2.1 

2.1.0: Write a word holiday ( “s” — ) that 
when used:

“Deepavali” holiday 

says  Happy Deepavali ok 

Test out your word for other holidays. Analyse the 
data stack when “Christmas” holiday is called. 

*2.1.1: Amend the holiday word so that it prints out 
the number of times it is called. Eg, 

“Deepavali” holiday 

“Christmas” holiday 

“Hari Raya” holiday 

“Chinese New Year” holiday 

should print out: 

Happy Deepavali 1 

Happy Christmas 2

Happy Hari Raya 3

Happy Chinese New Year 4 

6

Figure 7: The action of the two 

periods . . 



Rearranging the Data Stack
In many cases you want to re-arrange items on the stack. 
For example, if you already have 3 and 5 on the data stack 
(eg, as output from a word), the - word always subtracts its 
second argument from the first. That is, 3 5 - is 
equivalent to 3 - 5. 

How would you create a version of - (let’s call it -*) that 
subtracts the second argument from the first? Ie, 3 5 -* 
is the same as 5 - 3.

There are two ways to so this: 

We could use the stack word swap to switch the places of 
the top two items:

: -* ( n n — n )  
 swap -  
;

Figure 8 shows the action of swap on the data stack. 

The second method - which is slower and more verbose - is 
to use locals. These are temporary names we give to items 
on the stack. For example, let’s give the name 1st to the 
first argument and 2nd to the second one. Here’s how we 
would write -* using locals: 

: -* ( n n — n ) { 1st 2nd } 
    2nd 1st -  
;

• The word { begins a locals definition, and the definition 
is stopped when the } is met. } itself is not a word, it is 
simply a signal to { to stop the definition. 

• The names 1st and 2nd are assigned to items on the 
data stack in the order they are met. The actual items on 
the stack are removed once the definitions are done. 
Figure 9 illustrates this.

• You can think of 1st or 2nd as temporary words whose 
action is to push the value they represent onto the data 
stack. 

The important thing to note about locals is that they 
remove items from the data stack and give these items 

7

Figure 8: The action of swap on 
the data stack. Only the top two 
items (in this case, Hello and 3) 
are switched; the rest of the stack 
(in this case the number 35) are 
left as they are. 

Figure 9: The action of using locals 
is to remove items from the data 
stack and to assign these items 
temporary name. In this example, 
1st = 3 and 2nd = 5, which can 
be used throughout this word.  



you’ve defined. These names are temporary in the sense 
that they may only be used in the word within which the 
local is defined.

Locals can only be defined and used within  word 
(compilation mode), while stack words can be used in 
either compilation or interpretation mode. 

• Use stack words for simple rearrangement. The 
example above is a good application. Do not use 
locals for such cases as they will make your code 
harder to understand. And slower.

• Use locals only for complex rearrangement. Even 
in this case, there is usually the need to mix using 
stack words and locals.

As with all things in life, plenty of practice and 
reading good code will help you get a feeling of when 
to use them.

Common Stack Words
Some common stack words: 

• swap switches the top two items.
• drop discards the top item on the data stack. 
• dup duplicates the top item on the data stack.

Quiz 2.2 

2.2.0: Without running it, what is the output of the 
following program? 

1 2 dup + - 

2.2.1: Write a word nip that drops the second item 
from the top. Eg, if nip is applied to a stack 1 2 3 
4, we want the result to be 1 2 4 , ie the second 
item has been discarded. Hint: You only need to use 
the common stack words. 

2.2.2: Without using locals, is it possible to write a 
word over that takes the second item from the top, 
duplicates it and places it at the top of the stack? ie, 
1 2 3 over will become 1 2 3 2? 

8



The Spare Stack 

Quiz 2.2.2 shows us that to make the stack words more 
complete, we need a place to temporarily store data 
outside the data stack.

That place is the spare stack. 

As the name implies, it is also a stack. You can push items 
from the data stack into it using >R (called PUSH-R) and 
pop items off it back into the data stack using R> (called 
POP-R). 

Here is a sequence of actions that illustrate the action of 
these words: 

1 2 3 >R  \ 1 2 on data stack 
         \ 3 on spare stack
+        \ adds 1 and 2 on the data stack       
                      \ 3 on data stack 
R>       \ data stack is 3 3  
         \ spare stack is empty
-                    \ data stack contains number 0

In addition to these words, there is also R@ which is called 
PEEK-R, that simply pushes a copy of the top of spare 
stack onto the data stack. 

Quiz 2.3 

2.3.0: Without running this code, can you say what 
the result will be? 1 2 >R >R R@ . 

2.3.1: Create a word rdrop that removes the top of 
the spare stack. 

2.3.2: Write the over word as described in Quiz 2.2.2.

2.3.3: Write a word tuck that inserts the top item 
into 3rd place. Eg: 1 2 3 tuck becomes 1 3 2 3

NOTE: rdrop, over and tuck are also common stack 
words. 

9



The stack is an integral part of programming Smojo, so 
you need to be really comfortable working with it.

If you program in other languages, you probably will be 
familiar with the concept of locals. That’s good! But you 
will also likely use locals reflexively. That’s bad. 

Learn to use stack words well.

Stack Viewing and Debugging
Most of the problems in Smojo go on in the data stack: 

• You might expect and item to be on the data stack when 
it’s not. This will give the dreaded “null” error or 
“Nullpointer Exception” error. 

• The places of the items might be different from what 
you expect. This may give you bugs or more likely a 
cryptic “Class Cast Exception” error. 

Smojo has two simple but powerful words to help you 
debug these situations: 

.S prints the contents of the data stack without altering 
it. For example, 

1 2 3 .S 

will display 

<3> 1 2 3 ok 

BP is similar, but prints information of the word that it’s 
in. It can be used in both compilation and interpretation 
mode and I would recommend you use this in your code 
for all basic debugging. Here’s an example using our -*: 

: -* ( n n — n )  
    swap bp - bp  
; 

I’ve used a different colour for BP just to make the code 
easier to read, and to emphasise that BP has no effect on 
your underlying code. 

10



Try running this program: 

1 2 -* . 

with the this definition of -* and you should see: 

--breakpoint: -*[1] -- 
<2> 2 1 

--breakpoint: -*[2] -- 
<1> 1 
1 ok

Note that: 

• The name of the word in which BP is called (in this case, 
-* ) is displayed. 

• The index of the breakpoint within the -* word is also 
displayed in square brackets. In this example, there are 
two BPs in -* and their index is clearly shown. 

• BP displays the contents of the data stack (ie, the same 
as .S). 

Quiz 2.4 

2.4.0: The word .R displays the contents of the 
Spare stack. Redefine BP so that it also displays the 
contents of the Spare stack. Test your code with the 
example using -*.

2.4.1: Can you find the bug in the following code? 
Use BP to assist you: 

: hello ( -- "s" )   
   "Hello" .  
;  

: greet ( "s" -- )  
   hello . . cr  
; 

"Maurice" greet  

 

11



Pro Tip  

Since Smojo is executed top-to-bottom, left-to-right, you 
can use this to your advantage to narrow down the 
location of most errors. 

If your BP displays before an error is shown, then you 
know that the error occurs at a point in code after that 
BP. 

Similarly if an error is displayed before your BP, then the 
buggy code occurs before the BP.

You can therefore strategically place BPs to narrow down 
the location of an error. 

Learning Points
• You understand what a stack is and how Smojo used a 

single stack called the “data stack” to passes data 
between words.

• You know how to manipulate items on the data stack 
using stack words and locals.

• You know how to use BP to debug your programs. 

12



Answers to Quizzes
Quiz 2.0

2.0.0: It prints 6 and leaves nothing on the data 
stack. 

2.0.1: Exactly the same as 2.0.0 - it prints 6 and 
leaves nothing on the data stack. Although they are 
equivalent, this form is preferable to 2.0.0 as the 
actions of + can be clearly understood. 

Quiz 2.1 

2.1.0:   

: holiday ( “s” — )  

   “Happy” . . cr 

;   

2.1.1: 

: holiday ( n “s” — n ) { n s }  

  “Happy” . s .  

  n . cr 

  n 1 + 

; 

1 \ Start index 

“Deepavali” holiday 

“Christmas” holiday 

“Hari Raya” holiday 

“Chinese New Year” holiday 

13



Quiz 2.2 

2.2.0: -3 on the data stack.

2.2.1: 

: nip ( a b — b )  

 swap drop 

;   

2.2.2: Not possible since we need to save the 
intermediate result somewhere. 

Quiz 2.3 

2.3.0:  1 ok

2.3.1: 
: rdrop ( — )  
  R> drop  
;

2.3.2:
: over ( a b — a b a )  
 >R dup R> swap  
; 

2.3.3:
: tuck ( a b — b a b )  
   swap over  
;

Quiz 2.4 

2.4.0:
: BP ( — )  
 BP .R 
;

2.4.1: Can you find the bug in the following code? Use BP 
to assist you: 

14



: hello ( -- "s" )   
   bp 
   "Hello" .  
   bp 
;  

: greet ( "s" -- )  
   bp  
   hello . . cr  
   bp 
; 

"Maurice" greet 

When executed, shows the following: 

--breakpoint: GREET[1] -- 
<1> Maurice 

--breakpoint: HELLO[1] -- 
<1> Maurice 
Hello 
--breakpoint: HELLO[2] -- 
<1> Maurice 
Maurice ERROR: null
... in line 18
java.lang.ArrayIndexOutOfBoundsException 
ok

This output clearly tells us the issue:

• The second BP in greet doesn’t display, while all 
others do, meaning that the error occurs after hello 
is called but before the last BP, ie, in: . . cr  

• CR is unlikely the problem (since it just prints out a 
new line without affecting the data stack), so the issue 
is with the double periods. They expect 2 items on the 
data stack. But the BP after hello is run shows only 
one item (Maurice)

• The stack comment on hello is ( — “s” ) which 
means it needs to output a single string. But the BPs 
when hello starts and ends shows no change in the 
stack size. We should expect the data stack size to 
increase from 1 to 2 after hello is run, but it actually 
remains the same. This is the bug. 

15



• We then notice that hello has a period . that prints 
Hello. Removing this period solves the bug. 

Appendix: Stack Words
Word Action

drop discards an item from the data 
stack. Eg, 
1 2 3 drop will yield 1 2 on 
the data stack. 

dup Duplicates the top item on the 
data stack. Eg, 

1 2 3 dup will yield 1 2 3 3 

swap swaps the top two items on the 
data stack. Eg, 

1 2 3 swap yields 1 3 2 

over 1 2 3 over becomes 1 2 3 2

tuck 1 2 3 tuck becomes 1 3 2 3

nip 1 2 3 nip becomes 1 3

>R R> R@ Pushes, pops and peeks items 
into the spare stack. 

.S Displays the contents of the data 
stack without altering it. 

BP Displays the contents of the data 
stack along with information on 
which word calls it. Very useful 
in debugging. 

.R Prints contents of the Spare 
stack.

16


	The Data Stack
	Data in and out of your programs
	What is a Stack?
	Last in First Out
	Stack Simulation
	Smojo’s Data Stack
	“Every data item in Smojo is either being implicitly pushed on to a single data stack or implicitly popped from it.”
	“A literal is something that pushes its value onto the data stack”

	Words and the Data Stack
	Rearranging the Data Stack
	Common Stack Words
	The Spare Stack
	Stack Viewing and Debugging
	Pro Tip
	Learning Points
	Answers to Quizzes
	Appendix: Stack Words


