
Smojo is a new programming language for Data Science
and Artificial Intelligence. It is fast, easy to learn and use.

In this module, we cover the basics of Smojo.

Words and Literals
In Smojo, everything is either a Word (ie, an action) or a
Literal (eg, numbers, text, etc.). For example, this
program:

“Hello World” .

Consists of the Literal text Hello World and the
Word . which prints the text to screen. If you run this
program, you should see:

Hello World ok

The program:

1 2 + .

adds two literal integers, 1 and 2 then prints the result to
screen.

Quiz 1.0: Try out this program now. Also try printing the
result of 1 divided by 2. Does the answer surprise you?
There is a difference in Smojo between integer operations
and those for real numbers.

Left to Right
Smojo code is executed from left to right. Also, all words
like + and . act on preceding input. This means that data
transformations are very simple. For example, if you have

1

Smojo always responds with
“ok” to tell you that your
program has stopped.

Smojo Basics
The basics of the Smojo programming language

There is a list of commonly used
Math words at the end of this
chapter.

an operation clean followed by normalise then
process, of some input, in Smojo, this is just:

clean normalise process

Which is the natural way of expressing this data
processing pipeline. There is no need for parentheses in
Smojo because everything is from left to right.

Because of this, spaces are important in Smojo. For
example, this code won’t work:

\ WON’T WORK!!!

1 2+ .

because Smojo needs a space between the literal 2 and the
word +

\ WORKS FINE!

1 2 + .

New Words
For example, in Smojo, to make a new word, transform,
you would write:

: transform

 clean normalise process

;

The words : and ; are not punctuation (remember, in
Smojo, there is no punctuation, only Words or Literals).
The word : begins the definition of a new word while the
word ; completes it.

Quiz 1.1: Write a word average that averages two
numbers. For example, 3 4 average . should display
3.5. Hint: you need to use +. and /. which are real
number addition and division respectively.

2

The Data Stack
All Literals in Smojo are entered into the Data Stack. For
example, in the program:

1 2 + .

Here’s what happens:

1. First, the Literal 1 is placed on the data stack.

2. Then the literal 2 is added to the top of the stack. So 1
is below 2.

3. The word + takes off the top two literals on the data
stack (ie, 1 and 2) and adds them. The result (ie, 3)
is placed on the stack. So, at this point, the stack
contains just one literal, 3.

4. The word . takes off the literal on the top of the stack
and prints it. Now, the stack is empty.

You can see what happens on the stack by using the word
BP. This word displays the content of the stack. For
example, to see steps 1 to 4 in action, we amend the code
above:

1 BP 2 BP + BP . BP

If you run this program, you will see:

--breakpoint #8--
<1> 1

--breakpoint #9--
<2> 1 2

--breakpoint #10--
<1> 3
3
--breakpoint #11--
<0>
ok

The numbers in brackets (eg <2>) indicates the number
of literals currently on the data stack.

3

Locals
Often, it is convenient to give the literals on the data stack
temporary names. We use locals to do this. For example,
to get the average of two numbers, we can use locals:

: average { a b }

 a b +. 2 /.

;

In this example, the word { begins a local definition, while
} ends it. So, b gets the literal at the top of the data stack,
while a is the item below it. So, the program:

3 45 average

results in a = 3 and b = 45. Locals remove the literals
from the data stack as they are being named. Also, locals
only work within the definition of a new word. They are
also only valid within the word containing them. For
example:

\ Finds the average of 2 numbers.

: average (n n -- n) { a b }

 a b +. 2 /. ;

3 45 average .

a . b .

Will result in an error because a and b only have meaning
within the word average.

As you might have guessed, the lines in purple, like
\ Finds… are comments, which are ignored by Smojo
and only for human readability. The word \ starts a line
comment. (starts a “stack comment” that ends with). So,
the comment (n n -- n) simply means that the
word expects two numbers as input and outputs a single
number.

4

Quiz 1.2: Compare this definition of average with the
one you did in Quiz 1.1. Which is simpler? Put in BPs into
average and verify that locals do remove the literals
from the data stack. Test out your new code.

Quiz 1.3: Write a word frac that gets the fractional part
of a real number. For example, 1.2 frac . should
display 0.2. Hint: you need to use the word floor that
gives the integer part of a real number. You also need to
use -. for real number subtraction. Does your word work
for negative numbers?

Interpretation vs Compilation
Smojo has two modes of operation.

• Interpretation Mode: words are executed when they
are encountered. This is the default mode.

• Compilation Mode: used in the definition of new
words. Words are no longer executed, they are instead
added into the new word’s definition. The exception is
immediate words which are executed even in
compilation mode.

The word : begins compilation mode and the immediate
word ; ends it.

An example:

“Hi Johnny” . —- interpretation mode

: greet —- compilation mode

 “hi” . . cr ; —- compilation mode

“Johnny” greet —- back to interpretation mode

5

Conditionals
Conditionals help your program to make decisions. In
Smojo, these work only in compilation mode (ie, within a
word definition). We start with an example:

: number>text { s }

 s 2 = -> "TWO" |

 s 3 = -> "THREE" |

 s 4 = -> "FOUR" |

 otherwise "Whatever" |.

;

2 number>text . cr

25 number>text .

The word number>text converts (some) integers into
text.

The word -> checks if the preceding value on the data
stack is true. If so, it executes the body of the code up to
the delimiter word |, and then skips to the code after the
final delimiter |.. If false, Smojo skips to the code after
the nearest delimiter. The final delimiter is the word |.

Quiz 1.4: Type in this code into the Autocaffe editor and
run it. What does the word cr do? What does the word
otherwise do? (Hint, replace otherwise with true
->).

Quiz 1.5: Here’s another way to write number>text, but
there’s a bug. What is wrong with this code?

6

: number>text2 { s }

 s 2 = -> "TWO" |.

 s 3 = -> "THREE" |.

 s 4 = -> "FOUR" |.

 “Whatever”

;

2 number>text2 . cr

25 number>text2 .

How would you fix it? Hint: the word exit causes
execution to return to the caller.

Executables
An executable (or XT for short) is a Literal that you can
execute. XTs are widely used in Smojo and is what makes
Smojo a powerful programming language.

You can get the XT of any word using the word ‘ (called
tick) in interpretation mode or [‘] (called bracket-
tick) in compilation mode. For example:

: hello “hi” . ; — definition of hello

hello — runs hello

‘ hello bp —

execute —

So, there is no difference in results between:

hello and ‘ hello execute

7

puts the XT for hello on the
stack.The BP is just to print
the contents of the stack.

takes the XT off the stack and
executes it.

Both lines execute the word hello, or more correctly, its
XT.

In Smojo, the XT is important; names like hello provide
us with easy access to a word’s XT. You can execute any XT
using the word execute. In interpretation mode, Smojo
retrieves a word’s XT given its name and runs the XT. In
compilation mode, that XT is compiled into the new word.

Quotations
Since XTs are the most important in Smojo, is it possible
to create XTs with no names? Yes. We use the words [:
and ;] (in compilation mode) and :> and ; (in
interpretation mode):

:> 1 2 + . cr ; execute —-

: mk-hello { s }

 [: “hi” . s . cr ;] —-

;

“Janna” mk-hello bp —-

execute —-

Quiz 1.6: Run this example and make sure you understand
how it works.

8

Creates an XT in
interpretation
mode.

Defines an XT in
compilation
mode.

Creates the defined
XT. Note that the
XT will be different
depending on the
value of the input.

Runs the XT.
What is the
output?

The Importance of XTs
XTs are useful because they can be passed as input into
other words. You will see this in action when we use Smojo
for data processing.

To recap:

‘ is used to retrieve the XT given a name in interpretation
mode.

[‘] is the same, but used in compilation mode.

[: … ;] is used to define a quotation in compilation
mode. An XT is not produced, just defined. The XT is
created when the enclosing word is run.

:> … ; is used to define a quotation in interpretation
mode. The XT is produced immediately after ;

Example: Numerical
Differentiation
XTs offer a powerful way to break up your program, so
that various parts can be re-used. For example, suppose
we needed to find the differentiation of a function . We
can use the forward difference formula:

where is a small number. There are much better formulae
for numerical differentiation, but we will use the forward
difference formula for simplicity.

Here is one way to use the equation to numerically
differentiate . The word diff does the work
of numerically differentiating f:

\ f(x) = 3 sin(x)
: f (n -- n)
 sin 3 *. ;

f (x)

f ′ (x) ≈
f (x + ϵ) − f (x)

ϵ

ϵ

f (x) = 3sin(x)

9

: diff (n -- n) { x }
 x 0.00001 +. f
 x f
 -. 0.00001 /.
;

\ Test!
3.1 diff .

Quiz 1.7: Try this example in Autocaffe. What is the
result? Calculate the actual differential using a calculator.
Do these two match?

Quiz 1.8: What is the value of ? Is there a better way of
doing this? Hint: 0.1 constant epsilon defines
 = 0.1. Use constant to tidy up the code above.

Quiz 1.9: Calculate the differential of analytically and
write a word called df/dx to output the actual value of

. Compare the analytic value of with the one
obtained by numerical differentiation using diff. What is
the error? What is one way to improve accuracy?

Two Problems

There are 2 big problems with diff:

1. How can we use it to differentiate other functions like
 or ?

2. How do we calculate higher order differentials like ,
or or ?

The simple solution to the first problem to write different
versions of diff, eg, diff-f to differentiate f and
diff-g to differentiate g, etc. The example below shows
how this might be done:

\ f = 3 sin(x)
: f (n -- n)
 sin 3 *. ;

\ g = x^2
: g (n -- n)
 dup *. ;

ϵ

ϵ

f (x)

f ′ (x) f ′ (x)

g(x) = x2 h(x) = 31e2x

f ′ f ′ ′
g4 h12

10

\ h = 31 e^2x
: h (n -- n)
 2 *. exp 31 *. ;

: diff-f (n -- n) { x }
 x 0.00001 +. f
 x f
 -. 0.00001 /.
;

: diff-g (n -- n) { x }
 x 0.00001 +. g
 x g
 -. 0.00001 /.
;

: diff-h (n -- n) { x }
 x 0.00001 +. h
 x h
 -. 0.00001 /.
;

\ Test!
3.1 diff-f . cr
0.1 diff-g . cr
0.35 diff-h . cr

(Note: The word DUP duplicates the top item on the data
stack. So, 23 dup bp will display <2> 23 23)

It should be immediately obvious that while the functions
f, g and h are quite different, their numerical
differentiation, diff-f, diff-g and diff-h are
remarkably similar.

In fact, I just copy-n-pasted the original code for diff
each time, making the small change to the function used.
This is to be avoided since it makes your code prone to
errors.

11

Generalizing DIFF

The next step to amend our original diff to work on any
function. This is possible if we can use the function's XT as
input into the new diff:

: f (n -- n)
 sin 3 *. ;

: g (n -- n)
 dup *. ;

: h (n -- n)
 2 *. exp 31 *. ;

: diff (n xt -- n) { x fn }
 x 0.00001 +. fn execute
 x fn execute
 -. 0.00001 /.
;

\ Test!
3.1 ' f diff . cr
0.1 ' g diff . cr
0.35 ' h diff . cr

Wow! This new program performs the same task as before
but uses much less code. Also, we can use the new diff
for any function.

This is the power of using XTs.

Quiz 1.10: Study this example of diff carefully. Be sure
you understand how it works.

Using fn execute each time this way is clumsy. A better
method is to use the word ~:

: diff (n xt -- n) ~ { fn } { x }
 x 0.00001 +. fn
 x fn
 -. 0.00001 /.
;

~ is always used in conjunction with a single local { …
} only. If you need multiple ~ locals, you need to use
~ { … } multiple times.

12

Quiz 1.11: Re-run and test this code thoroughly now.
Our latest version of diff is able to differentiate any
function.

Higher Order Differentials

We can now tackle the second problem - calculating higher
order differentials.

We start by using diff to output a function, not a number.
So, ' f diff would give a function (ie, XT)
representing the first order differential of f.

This change means that we can now keep adding in diffs
to create higher order differentials. Eg,

' f diff diff

would also return a function (ie, XT) which is the second
order differential of the input function f.
In other words, higher order differentials can be obtained
simply by calling diff repeatedly.

Let’s make the changes now.

Step 0: diff is (n xt -- n), ie, it takes a number
and an XT then returns a number:

: diff (n xt -- n) ~ { fn } { x }
 x 0.00001 +. fn
 x fn
 -. 0.00001 /.
;

We want our new diff to be (xt -- xt).

Step 1: Change diff so that it no longer binds the input
x:

\ WON'T WORK!!!
: diff (xt -- xt) ~ { fn }
 x 0.00001 +. fn
 x fn
 -. 0.00001 /.
;

13

This won't work of course, since x is undefined and diff
does not return an XT. We must wrap diff's inner code
into a quotation and define x. Step 2:

: diff (xt -- xt) ~ { fn }
 [: { x }
 x 0.00001 +. fn
 x fn
 -. 0.00001 /.
 ;]
;

So, when diff is run, it will produce an XT (n -- n)
which is a numerical differentiation of the input function
fn.

Lastly, we need to amend our testing code. Since diff
produces an XT not a number, we need to use execute.
For example:

3.1 ' f diff diff execute .

will print out the value of . Note that diff will now
differentiate any function you feed into it.

Quiz 1.12: Re-write your testing code and ensure it works.
Make a comparison between the analytic and numerical
differentiation for and .

*Quiz 1.13: How would you use diff to differentiate
 along the line ? Hint: you can

use diff to differentiate . You can get
using a quotation. In this case, is known as a curried
function. Write your code and get the answer for .
Did the answer meet your expectations?

f ′ ′ (3.1)

f ′ ′ g′ ′

m(x , y) = x2 + y2 + 34 x = 12
l(y) = m(12,y) l(y)

l(y)
l′ ′ ′ (12)

14

Learning Points
• When starting to work on a problem, find the simplest

solution that works. In our case, we started with a
solution for diff that could only differentiate f once.

• Expand your code slowly only in response to additional
requirements. You expanded the code to handle
differentiating of other functions, (like g) not just f.
Do not anticipate complexity if its not immediately
required.

• The property of closure, where the input and output
of a word are the same is a simple but powerful idea. In
our case, we were able to re-use diff to obtain second
and higher order derivatives when we made the input
and output of diff to be the same (xt -- xt).
It takes experience to spot opportunities to use
closure.

• Most Smojo words are often just 2 - 3 lines of code,
very rarely more than 5 lines long. This rule makes
Smojo easier to debug.

• Always thoroughly test your code as you program.
Don't be tempted to code a lot all at once. Code a bit
then test. This will save you a lot of time and make you
a productive Smojo programmer!

15

Appendix: Math Words
Word Action

+ - * / = Used to operate between
integers only. If a real number is
encountered, it is truncated --
fractional part is discarded. For
example,
1 2 +
will give 3 as expected, but
1 2.8 +
will also give 3, since 2.8 is
truncated. The equal sign is used
to test if two integers on the
stack are equal.

+. -. *. /. =. As above, but these can operate
on real numbers. No truncation
is performed.

> >= < <= Inequality tests. These work on
both integers and reals. The
result is a boolean (true or
false) on the stack.

1 2.2 < .
displays
true ok

FLOOR Displays the floor of a number,
which is the closest integer
lower than the given number.

CEIL Displays the ceiling of a number,
which is the closest integer
higher than the given number.

ROUND Rounds off to the nearest
integer.

MIN
MAX

Minimum and Maximum of two
numbers.

^ Exponentiation.

2 3 ^ becomes 8

TAN
SIN
COS

Usual trigonometric functions.

16

ATAN2 The special arctangent, very
useful for computing directions
from vectors.

#e
#pi

EXP
LN

Natural exponentiation and
natural logarithms.

LOG10 Logarithms base 10.

TO-DEG
TO-RADIANS

Converts angles to degrees or
radians.

MOD
FMOD

Integer modulus and real
modulus. Use FMOD if either
operand is a real number.

ABS The absolute value.

TRUE
FALSE

Puts the logical values true and
false on the stack.

OR Logical OR. For example,
true false OR is true.

AND Logical AND. For example,
true false AND is false.

NOT Logical NOT.

Word Action

Constant values of e and π

17

	Smojo Basics
	The basics of the Smojo programming language
	Words and Literals
	Left to Right
	New Words
	The Data Stack
	Locals
	Interpretation vs Compilation
	Conditionals
	Executables
	Quotations
	The Importance of XTs
	Example: Numerical Differentiation
	Two Problems
	Generalizing DIFF
	Higher Order Differentials
	Learning Points
	Appendix: Math Words

