
So far, our programs have been stateless -- they can't
remember what happened before. In this lab, you will
learn a few new words to help your programs remember
things.

Constants
A constant is any value that doesn't change in the lifetime
of your program. For example,

3.14159 constant PI

: circumference

 2 *. PI *.

;

3 circumference .

Note: constant can only be used outside a word, ie in
interpretation mode.

The Data Stack
As you’ve seen in Chapter 1, Smojo has a special internal
data storage area called the data stack. It is a temporary
storage area to hold the input and output of words.

The data stack is capable of storing up to 512 items. You
may "push" (ie, put into the top of the Data Stack) or
"pop" (ie, remove from the top of the Data Stack) items.

You can examine the contents of the data stack at any time
using .S or BP.

1

Data Processing
Smojo for Data Processing

Smojo has a few words to manipulate items on the data
stack:

drop (a --) removes the top item on the stack and
discards it.

dup (a -- a a) duplicates the top item, so the there
are two of them.

swap (a b -- b a) swaps the positions of the top
two items.

The stack comments eg (a -- a a) give you an
indication of what’s happening on the data stack. They are
not used by Smojo and only meant to help you, the
programmer.

Variables
Variables are temporary storage areas for your program.
You can change their value using the words @ (called fetch)
and ! (called store):

0 variable N

: count (--)

 N @

 dup . cr

 1+ N !

;

\ Run count 3 times

count count count

In the example above the variable N is initialised to zero.
The word count displays the existing value of N then
increments it. The word @ fetches data from the variable
and the word ! stores data into it.

Quiz 2.0: Run this example and make sure you understand
how it works. Re-write count without using dup.

2

Fetch the value stored in N

Make a copy and Print the value,

Increment the value and save to N

An alternative form of a variable is made using the word
=>. Here is the previous example using =>

0 => N

: count

 N . cr

 N 1+ ['] N !

;

count count count
=> makes reading variables easier, since the fetch is not
needed. Writing to variable is slightly harder using =>
because you need to access the variable as an XT then
call !. In most Smojo code, => is used more often than
variable, since you're more likely to read a variable than
to change its value.

Note: variable and => can only be used outside a word.

Use variables sparingly. If you code has lots of variables, it's
a good sign you've probably coded the problem the wrong
way!

Hashes
A hash is a collection of key-value pairs. For example, a
person's details - his age, height and name can be stored in
a hash this way:

=> joe

"name" "Joey" joe #!

"age" 41 joe #!

"height" 170 joe #!

joe .

The word => assigns the empty hash # to a name (joe)

#! stores key-value pairs into the hash named joe.

3

The word #@ reads a single value from a hash given the
key. If they key is not present on the hash, the special value
null is returned. You can check for this using null?

=> joe

"name" "Joey" joe #!

"age" 41 joe #!

"name" joe #@ . cr

"gender" joe #@ null? . cr

Quiz 2.1: Run this example now.

Setters and Getters

You should use setter words instead of writing the hash
directly:

: name! (# v -- #) { h v }

 "name" v h #!

 h ;

: age! (# v -- #) { h v }

 "age" v h #!

 h ;

: height! (# v -- #) { h v }

 "height" v h #!

 h ;

"Joey" name! 41 age! 170 height! => joe

joe .

Quiz 2.2: Write additional setter words to set the person's
nationality and gender.

4

As with setters, you can write getter words like so:

: name@ (# -- v) { h }

 "name" h #@ ;

Quiz 2.3: Write getter words to match each setter word.

Tuples
Tuples (also known as Arrays) are a sequential collection of
items, addressable with an index, using the words !! and
@@. You can create a tuple using tuple or empty-
tuple:

"a" 1 # 3

 4 tuple => tp1

tp1 .tuple

2 empty-tuple .tuple

Quiz 2.4: Run this example now. Notice that the empty
tuple is filled with nulls. You can store data into a tuple
using !! and fetch it using @@.

"a" 1 # 3

	 4 tuple => ts

ts 2 @@ .

ts "hello" 2 !!

ts .tuple

Notice that @@ and !! are zero-indexed, (ie, the first item
is at index 0.). You can determine the tuple's length using
tuple-len:

"a" 1 # 3

 4 tuple => ts

ts tuple-len .

5

Sorting Tuples
You can sort a tuple using the word sort (tuple xt --
tuple). The XT needs to be of type (a b -- f|
null). In other words, it needs 2 items to compare and
should output:

• null if the inputs a and b are “equivalent”.

• true if a is "larger" than b

• false if a is "smaller" than b.

For example, we can sort an array this way:

10 3 41 2 6 19 100

	 7 tuple \ create the tuple

' < \ use < to compare

 sort .tuple \ sort & print.

Quiz 2.5: Run this example now.

Quiz 2.6: Sort the array above by ascending order.

*Example: Argmin and Argmax
Let's define a word argmax to calculate the index of the
maximum value in an array. If the value occurs more than
once, the last index is returned. To do this, we obviously
need argmax (tup -- n), and for it to iterate over
all the values of the tuple:

\ Draft 0 -- basic ingredients of argmax.

: argmax (tup -- n) { xs }

 xs tuple-len [: ;] itimes ;

What we need next is to store the current max value (mv)
and the current max index (mi). We also need to output
mi towards the end.

\ Draft 1 -- current max and max index

: argmax (tup -- n) { xs }

 0 \ mi

6

 0 \ mv

 xs tuple-len [: { mi mv i }

 xs i @@ { v }

 v mv >= -> i v exit |. mi mv

 ;] itimes

 drop \ remove mv from output.

;

Finally, we need to correctly initialize mv at the start:

\ Draft 2 -- initialize mv.

: argmax (tup -- n) { xs }

 0 \ mi

 xs 0 @@ \ mv

 xs tuple-len [: { mi mv i }

 xs i @@ { v }

 v mv >= -> i v exit |. mi mv

 ;] itimes

 drop \ remove mv from output.

;

Quiz A.1: Suppose we wanted to retrieve the first
occurrence of the maximum item instead of the last. How
would you amend argmax? Make the changes and test out
your new argmax.

Quiz A.2: Suppose we wanted to write argmin to get the
index of the last minimum item. Can you amend argmax
to do this? Try it out and test your code thoroughly.

We can obviously generalize argmax and argmin, using
the word arg (tup xt -- n). The XT in arg's input
is the sign used for comparison (< or <=, > or >=) each of
which will give the two versions of argmax and argmin:

\ Final version

: arg (tup xt -- n) ~ { cmp } { xs }

 0

 xs 0 @@

 xs tuple-len [: { mi mv i }

 xs i @@ { v }

 v mx cmp -> i v exit |. mi mv

7

 ;] itimes drop ;

: argmax ['] >= arg ;

: argmin ['] <= arg ;

This way of programming is common in Smojo. Start out
by making your words specific. Generalise when necessary,
by using XTs as inputs.

Quiz A.3: Solve Quiz A:1 using arg.

Sequences
Sequences are the workhorse of many Smojo applications.
They are useful because many programming problems --
especially in data science -- can be cast into the
manipulation of sequences.

A sequence is:

• Something with a head followed by a tail.

• The tail is always a sequence.

• The empty sequence is called nil, whose head is null
and whose tail is also nil.

• A sequence may be infinitely long, or of indefinite
length.

An example of a finite sequence is a list

1 2 3 "hey" joe 5 list => myList

myList . cr

myList .list cr

myList head . cr

myList tail .list cr

Quiz 2.7: Run this example and ensure you understand it
thoroughly. The word .list prints out the entirety of a
finite sequence.

8

You may:

• add to the head of a sequence using cons

• join two sequences using ++

1 2 3 4 5

 5 list => myList

myList "hey" cons => myList2

myList .list

myList2 .list

myList2 head . cr

myList myList2 ++ .list

Quiz 2.8: Run this example now and be sure you
understand how the words cons and ++ work.

Quiz 2.9: Add the two items "hello" "world" to myList2
and check your answer using .list.

Quiz 2.10 You can reverse a list. Try reversing
myList2 and check your answer.

Quiz 2.11: There is a shortcut to creating small lists, using
the words {{ and }} eg:

{{ 1 2 3 4 }} .list

Try this out now.

Infinite Sequences
Sequences may be of infinite length. To create one, we
often start with a simple infinite sequence 1,2,3,...

1 2 ... => ns \ don't .list this!

ns head .

Quiz 2.12: Print the second element of ns. Hint: you need
to use head and tail.

Quiz 2.13: Can you reverse an infinite sequence?
9

Quiz 2.14: Define zs as 0 followed by the list ns. How
would you create zs? check your code using head. Hint:
you need to use cons.

You can truncate an infinite sequence using take and
take-while:

1 2 ... 12 take .list

4 13 ... :> 41 < ; take-while .list

Quiz 2.15: Run this example now. Do you understand how
take and take-while behave?

Quiz 2.16: Write code that prints out the first 100
elements of the sequence 2,4,6,8...

Quiz 2.17: Write code that prints out the first even
numbers less than or equal to 100. Hint: <= is less than or
equal to, >= is greater than or equal to.

*Quiz 2.18: Define a word take-until (seq xt --
seq) that "takes" a sequence until the XT returns true.
For example,

2 4 ... :> 5 > ; take-until .list

should print 2 4. Hint: You need to use ~ , quotations and
take-while. Also not is logical negation, for example,
true not is false.

Higher Order Functions
(HOFs)
Higher Order Functions — map, reduce, filter and
zipwith are words that transform sequences. These
words are key building blocks for Smojo programs that
process data.

Map

10

Recall that a sequence is an ordered collection of items. A
sequence may be of finite or infinite length.

The word map (seq xt -- seq) transforms any
sequence into a new one using an XT. For example,

{{ 6 5 4 3 2 1 }}

 dup .list cr

 :> 3 * ; map .list cr

Quiz 2.19: Try this example now.

Quiz 2.20: Transform the list {6,5,4,3,2,1} so that it
computes the powers of 2 using the elements of the list as
indices.

The important thing to note about map is that it is lazy.
This means that it doesn't output the actual answer, but a
promise to do the answer. Let me give you an example:

1 2 ... \ Make an infinite list.

 ' 1+ map \ adds 1 to each element.

 \ do not .list, since the 	 	

 \ result is infinitely long.

10 take .list \ truncate and print.

In the example, map transforms the infinite sequence 1,2...
into the infinite sequence 2,3... Since the transformation is
lazy, the 1+ additions are never done until .list is called.

Without laziness, map would never complete because the
sequence is infinite.

This property of laziness turns out to be very important in
data processing, as it simplifies your code dramatically.

Quiz 2.21: In the example above, instead of 10 take to
make the sequence finite, how would you get the first
items which are less than 10?

11

Zipwith

Sometimes you want to combine two sequences using a
function to get a third sequence. For example,

2 5 ... \ sequence 1

0 1 ... \ sequence 2

 ' - zipwith \ sequence 1 - sequence 2.

10 take .list

Like map, zipwith (seq seq xt -- seq) is a
lazy word. It doesn’t do anything until a reduction (in
thie example, .list) is called.

Quiz 2.22: Try out this example. Why was take needed?

If the input sequences are of different lengths, the length
of the output sequence is the same as the shorter input:

{{ 2 3 4 5 4 }} \ sequence 1

0 1 ... \ sequence 2

 ' - zipwith \ sequence 1 - sequence 2

.list

Quiz 2.23: Do we need take in this example?

Quiz 2.24: You are asked to build a word double (seq
-- seq) that doubles the values in a sequence. Write
and test this word using map then using zipwith. Which
approach is best?

12

Filter

Use filter (seq xt -- seq) to select items from
a sequence satisfying a given criterion. The XT should
output a flag (ie, true or false):

2 4 ... \ even numbers

1 3 ... \ odd numbers

 ' * zipwith \ pairwise multiply them

:> 256 mod 0= ; filter \ selects items

 \ divisible by 256.

10 take .list

Like map and zipwith, filter is also lazy. This means
that nothing is done until the results are requested for
by .list.

Quiz 2.25: Write a short program to get the first 300
cubes divisible by 13. Hint: use map, filter and take.

Thinking in HOFs
HOFs are so powerful because their output can be re-used.
For example, to expand on our previous code:

2 4 ...

1 3 …

' * zipwith :> 256 mod 0= ; filter

	 	 => myData

\ You can do a lot with myData:

\ Print the first 10 items.

myData 10 take .list

\ first items less than 700,000.

myData :> 700000 < ; take-while .list

13

\ first 10 items divisible by 3.

myData :> 3 mod 0= ; filter 10 take .list

Quiz 2.26: Run this example and see the results.

Important: So far, our examples all use "simple"
sequences like 1 2 In real applications, you'd instead be
working with sequences of data drawn from a file (eg, CSV
or binary) or other data sources (eg, a network or
databases). For now, try to get a good grasp of using HOFs
for simple sequences.

Quiz 2.27: Write a word that outputs a sequence of cube

differences. Ie, the kth term of . Hint: you

need to use part of your answer from Quiz 2.25 and use
tail and zipwith.

Quiz 2.28: Override the usual arithmetic operations + - *
and ^ so that they work on sequences. For example:

: + (seq seq -- seq) ['] + zipwith ;

\ -- TEST!

1 2 ...

3 4 ...

	 + 10 take .list

Quiz 2.29: Extend your operators in Quiz 2.28 to handle
mixed operations between sequences and scalars. Eg,

3 {{ 1 2 3 }} *

should output the sequence {{ 3 6 9 }}. Hint: you
need the word seq? (x -- f) that outputs true if x
is a sequence. Be sure your words work which ever
position the scalar is in, and also when only scalars are
involved. For now, use only integers for scalars.

1
(1 + k)3

−
1
k3

14

Reduce

A reduction is a way to get actual results from a lazy
calculation. We use the word reduce (seq xt --) .
Here are some examples

\ Prints all elements in a sequence

: .list (seq --)

 [‘] . reduce

 cr

;

{{ 1 2 3 4 5 6 7 8 }} .list

Quiz 2.30: Try out this example.

Exercises

Complete these exercises before proceeding. Answers are
at the end of this Lab:

Q1: Write a word minimum (seq -- n) to find the
minimum value of a sequence. Does your word make any
assumptions about the maximum value?

Q2: Write a word reverse that reverses any finite
sequence. Can this word be Lazy? Is it possible to reverse
infinite sequences?

Q3: Given a sequence , write a word sum3
(seq -- seq) which produces a new sequence:

s = (s0, s1, s2, . . .)

sum3(s) = (s0 + s1 + s2, s1 + s2 + s3, . . .)

15

Q4: Generalize sum3 to sumN (seq n -- seq),
which is able to sum any length window n. sumN should
take the initial sequence and n as input.

Q5: Write a word zip (seq seq -- seq) that
produces 2-tuples from each pair of elements of the input
sequences.

Q6: Write a word take (seq n -- seq) that
produces a sequence of the first n elements of an infinite
sequence. Hint: You may have to use zipwith and
take-while (seq xt -- seq)

Q7: Is:

1 2 ... 255 take

 :> 31 mod 0 = ; filter

the same as:

1 2 ... :> 31 mod 0 = ; filter

	 255 take

explain why.

Q8: Write a word that performs this sum over N terms:

Q9: Write a word consa (seq seq -- seq) that
conses the second (finite) list to the first.

Example: Polynomial
Arithmetic
A polynomial in x is an expression of the form:

So, all we need to determine a polynomial are the sequence
of numbers . This means that sequences are perfect for
representing polynomials. Infinite sequences are a better
choice since they can easily represent polynomials of
arbitrary length. For example:

6
1 * 3

+
7

3 * 7
+

8
9 * 11

+
9

25 * 15
+ . . .

P(x) = ∑ ck xk

ck

16

• The trivial polynomial can be represented by
the sequence: 0 0 ...

• The polynomial can be represented by the
sequence: 0 0 ... 1 cons 0 cons

• You can add two polynomials by simply adding their
elements in piecewise fashion. You've done this in Quiz
2.28. This takes advantage of the fact that the zipwith
HOF is lazy.

• You can multiply a polynomial with a scalar by
multiplying every element with . You have done this in
Quiz 2.29. Again this takes advantage of the laziness of
map.

Quiz 2.31: Write a word that multiplies a polynomial
(ie, an infinite sequence) by . Hint: How would the
coefficient of change after multiplication by ?

Quiz 2.32: Can we multiplying two arbitrary polynomials
using HOFs?

Application: Characteristic Functions

A characteristic function is a polynomial of the form :

For example, is a
characteristic function. How can we find the coefficients
of ?

Here's a solution:

1. We create the polynomial . Recall, this is
represented by the sequence { 1 , 0 , 0 ... }.

2. We multiply each factor to . We call this word
mul-factor.

3. We can represent the numbers as a list, then run a
reduction on it using mul-factor.

P(x) ≡ 0

P(x) ≡ x

k
k

P(x)
x

xk x

P(x) = ∏ak − x

P(x) = (1 − x)(3 − x)(45 − x)

xk

P0(x) ≡ 1

(ak − x) P0

ak

17

Here is a partial solution, with all of the code except for
mul-factor:

\ multiplies seq by (a - x)

: mul-factor (seq a -- seq)

 \ You need to write this code!

;

: char (seq -- seq)

 0 0 ... 1 cons \ P0 = 1

 swap ['] mul-factor reduce

;

\ Test!

{{ 1 3 45 }} char 4 take .list

Quiz 2.33: Complete the code for mul-factor. Hint:
Use your answer from Quiz 2.31 and Quiz 2.28.

Quiz 2.34: In the code listing we had to 4 take. Can you
get rid of this unsightly hack? Ensure that your answers
work for arbitrary, finite sized inputs. What is the
coefficient of if the input is {{ 1 2 3 4 5 6 }} ?

I hope this lab gives you some insight into what's possible
with lazy HOFs and infinite sequences. Things get more
interesting of course when we work with real datasets
instead of purely mathematical examples like the ones
we've encountered thus far.

x5

18

Learning Points
Let’s review what you learned in this chapter:

• You’ve learnt about constants, variables, hashes, tuples and
sequences.

• Sequences have a special place in Smojo since they can be
lazy. Paired with lazy HOFs, this allows us to express and
solve tricky programming problems quite simply.

Answers to Exercises
Q1: Write a word minimum (seq -- n) to find the
minimum value of a sequence. Does your word make any
assumptions about the maximum value?

Answer:

: minimum (seq -- n) { xs }

 xs empty? -> “Empty List!” abort |.

 xs head xs tail ['] min reduce

;	

\ -- Test

1 2 ... 10 take minimum .

10 9 ... 10 take minimum .

1 2 ... :> 1 swap /. ; map

	 10 take minimum .

Q2: Write a word reverse that reverses any finite
sequence. Can this word be Lazy? Is it possible to reverse
infinite sequences?

Answer:

: reverse (seq -- seq)

 nil swap ['] cons reduce

;

1 2 ... 10 take reverse .list

19

It isn't possible for reverse to be lazy. Since the whole
sequence has to be known prior to reversal, it would be
impossible to reverse an infinite sequence.

Q3: Given a sequence , write a word sum3
(seq -- seq) which produces a new sequence:

Answer:

: +s (seq seq -- seq) ['] + zipwith ;

: sum3 (seq --)

	 dup tail dup tail

	 +s +s

;

1 2 ... sum3 10 take .list \ 6 9 12 ...

1 3 ... sum3 10 take .list \ 9 15 21 ...

Q4: Generalize sum3 to sumN (seq n -- seq),
which is able to sum any length window n. sumN should
take the initial sequence and n as input.

Answer:

: +s (seq seq -- seq) ['] + zipwith ;

: SUMN (seq n -- seq) 1- { n }

 n [: dup tail ;] times

 n ['] +s times

;

1 2 ... 2 sumN 5 take .list \ 3 5 7 9 11

1 2 ... 3 sumN 5 take .list \ 6 9 12 15

1 2 ... 4 sumN 5 take .list \ 10 14 18 22

I've used times (n xt --) that executes the given
xt , n times. If n=0, the XT is not executed at all.

s = (s0, s1, s2, . . .)

sum3(s) = (s0 + s1 + s2, s1 + s2 + s3, . . .)

20

Q5: Write a word zip (seq seq -- seq) that
produces 2-tuples from each pair of elements of the input
sequences.

Answer:

: pair (a b -- a,b)

	 2 tuple ;

: zip (seq seq -- seq)

 ['] pair zipWith

;

1 2 ... 3 take

3 5 ... 3 take zip

dup .list \ 3 tuple objects

dup head .tuple \ (1,3)

dup tail head .tuple \ (2,5)

dup tail tail head .tuple \ (3,7)

Q6: Write a word take (seq n -- seq) that
produces a sequence of the first n elements of an infinite
sequence. Hint: You may have to use zipwith and
take-while (seq xt -- seq)

Answer:

: take (seq n -- seq) { n }

	 0 1 ... [: n < ;] take-while

	 ['] drop zipwith

;

	 	

1 2 ... 5 take .list \ 1 2 3 4 5

2 9 ... 1 take .list \ 2

21

Q7: Is:

1 2 ... 255 take

 :> 31 mod 0 = ; filter

the same as:
1 2 ... :> 31 mod 0 = ; filter

	 255 take
explain why.

Answer:

They are different. The first gives integers <= 255 that are
divisible by 31. The second gives the first 255 integers that
are divisible by 31.

Q8: Write a word that performs this sum over N terms:

: sum (seq -- n) 0 swap ['] +. reduce ;

: series (n -- n) { n }

 n 6 +.

 	 3 n ^

	 n 4 *. 3 +.

	 	 *.

	 /.

;

: series (n -- seq)

 0 1 ... ['] series map swap take

;

	 	

0 series sum . cr \ 0

1 series sum . cr \ 2.0

2 series sum . cr \ 2.33333333

3 series sum . cr \ 2.41414141

4 series sum . cr \ 2.43636363

5 series sum . cr \ 2.44286136

6
1 * 3

+
7

3 * 7
+

8
9 * 11

+
9

25 * 15
+ . . .

22

Q9: Write a word consa (seq seq -- seq) that
conses the second (finite) list to the first.

Answer:

: consa (seq seq -- seq)

	 reverse ['] cons reduce

;

1 2 ... 3 take

10 9 ... 5 take

 consa .list \ 10 9 8 7 6 1 2 3

23

	Data Processing
	Smojo for Data Processing
	Constants
	The Data Stack
	Variables
	Hashes
	Setters and Getters
	Tuples
	Sorting Tuples
	*Example: Argmin and Argmax
	Sequences
	Infinite Sequences
	Higher Order Functions (HOFs)
	Map
	Zipwith
	Filter
	Thinking in HOFs
	Reduce
	Exercises
	Example: Polynomial Arithmetic
	Application: Characteristic Functions
	Learning Points
	Answers to Exercises

