
In this book, we will explore using Smojo for meta
programming - programs which write other programs.

When and why is this useful?

To understand, we need to step back a little and see how
modern programming languages get their advantages.

In the 1970’s, when programming was at its infancy, you
could say that programming took a fork in the road. There
were no “personal” computers and computers were usually
huge, expensive machines sitting in the offices of large
corporations or government.

Programmers coded their programs either directly in
machine code or in assembly. This was tedious and error-
prone process.

During the late 1950’s to the early 1970’s, several higher
level programming languages were developed, with
the purpose of making it easier for programmers to write
programs.

Most of the languages we use now - Smojo, Java, Python,
Ruby, etc. can trace their ideas from these foundational
languages.

Higher Level Languages
The purpose of these higher level languages was to help
programmers tame the complexity when constructing
programs. They did this in a few ways:

First, they offered a standard set of keywords
corresponding to frequently required operations: looping,
conditional branching, arithmetic and the manipulation of
computer memory.

1

Introduction
All About Metaprogramming

The 1950’s - 1970’s were the
golden age for programming
languages. FORTRAN (1950’s),
ALGOL and COBOL (late
1950’s), Lisp (1960’s), C
(1970’s) and Forth (1970’s) ,
were among the pioneer
languages that shaped the style
and form of modern languages
we are now familiar with.

These keywords were either built-in operations (eg, + for
addition in C) or programming constructs (eg, the for
loop in C). Keywords almost without exception could not
be changed by programmers using the language, because
this immutability was a stable base on which programmers
could agree on program semantics. In fact, in later years,
standardisation of these languages became important,
using the ANSI standardisation process.

With the exception of Lisp and Forth, programmers using
these languages could not add new programming
constructs. You were left with whatever the designers had
already built into the language.

Second, in order to extend the functionality beyond the
small core set of keywords, language designers offered a set
of libraries and a method to link these to your own code.
Libraries offer a vast array of packaged functionality easily
accessible to the programmer. All he needed to know was
the functions exposed by the library and how to call them
from his program.

Programmers could create their own libraries and either
distribute the source-code for others to use or distribute
the compiled binaries.

The C programming language
The C programming language is unique because it alone
was used to build an operating system called UNIX in the
1970’s. Linux, MacOSX, the popular Android operating
systems and the various flavours of BSD are all descended
from UNIX and written in C for the most part.

C remains an important and widely useful language to this
day. It is used to create the fast math and computation
libraries that make Python a popular language for data
science. Pure Python code is very slow by comparison, and
although there are niche methods to compile python, to
my knowledge, none is widely used in data science or AI.
What makes Python usable is its ability to use existing
libraries written in C.

2

NOTE: In this book, I will
assume you are familiar
with the C programming
language.

If you are not, I would
encourage you to peruse
the excellent tutorial from
www.tutorialspoint.com

C retains its appeal because it has:

• Standardised semantics, so programmers can reliably
depend on its operation.

• Small set of keywords, which make learning C
relatively easy. Its offshoot, C++ while also popular, is
much harder to learn and use.

• Very large set of libraries, for almost anything you
need to do. Many of these libraries are open-sourced,
which means you had the option of customising or
forking your own version.

• Low-level access to computer memory, using
pointers. Which allows for faster operations or
operations not possible any other way (eg, access into i/o
devices). Other languages disallow this (eg Java) to
increase “safety” (ie, your program is less likely to crash)
but at the expense of speed.

• A compiler for every hardware platform. Code
written in C can be compiled and run for almost any
hardware platform (x86, ARM, RISC V, MIPS,
microcontroller) or operating system. It can even create
code that runs “standalone” without an OS. Many of
these compilers are mature for the major platforms and
produce optimised code. GCC and Clang are two
popular and free compilers for C.

Drawbacks of Libraries
While they are very useful, there are systemic problems
with using libraries, because of:

• Unanticipated Situations: Libraries by definition
cannot anticipate every situation. Prudent designers
often optimise for the “80%” use case. This leaves the
remaining 20% unoptimised or performing poorly.

• Layered Libraries: Many modern frameworks are
often layered in a hierarchy. Each layer is built on the
other. This promotes better testing and simplifies
development. However, each layer also contributes to a

3

decrease in speed and resources to be consumed
needlessly. I have seen this happen with complex
frameworks (eg Tensorflow).

• Unnecessary Code: Not all functionality of the library
might be needed, however (depending on the OS) all of
the library is loaded on an invocation. This can be a
problem in constrained environments.

• Breaking Changes in Libraries: Most libraries are
out of the programmer’s direct control, being developed
by others. Unfortunately, as libraries change (which is a
good thing - it brings bug fixes, improvements etc.)
library developers have a habit of needlessly introducing
breaking changes to interfaces (ie, APIs) previously
established. This is mostly a problem for open-sourced
projects (You can see such breaking changes in many
popular frameworks from everything from deep learning
to web servers) but less so for commercially-backed
products like the JDK.

• Libraries can be hard to use: A design solution for
unanticipated situations is to create either (i) very simple
generic APIs that meet the 80% need (the ioctl
function in Linux is a good example) or (ii) create a set
of APIs that must be invoked in a particular way to
anticipate every situation (eg, Linux’s v4l2 video
library). Simple generic interfaces are problematic
because they attempt to hide complexity or abstract
away hardware changes, possibly at the expense of being
optimal in terms of speed or resource usage. Complex
interfaces are hard to use correctly, or to understand.
And they are also more likely to suffer from Breaking
Changes (since the steps are more in number).

In most situations — I would say 80% of the time —
these concerns are minor. But in some specific instances,
they are serious - especially in the areas of:

• High-speed processing: training and inferencing of
neural networks, high-volume data processing and
realtime applications.

4

• Resource-constrained environments:
microcontrollers, training of NNs.

In these cases the first three drawbacks of libraries are
become especially apparent.

Our Approach
Our approach to solving these issues is twofold.

To specify a program for a particular area we propose
constructing Domain Specific Languages (DSLs) that
can be used seamlessly with the rest of the language. DSLs
go a long way in addressing the problem of complexity in
library use and partly the problem of premature
abstractions.

Secondly, we will also rely heavily on automatic program
generation to solve optimisation issues caused by
premature abstractions and layered libraries. In this case,
our programs will create as their output optimised code (I
have selected C and Assembly as our target languages).

Taken together, I will call these two techniques “meta-
programming” since it is about programs creating
programs.

Of course, we can and still will use libraries! But these
tools are useful because they help us build optimised
programs.

Why Smojo?
Every programming language shines in a particular area.
Smojo’s strength is in meta programming, specifically in
the areas I’ve just outlined. In this book, we will address
two questions:

Q1: How can we use Smojo to develop DSLs that enable
beginners to create complex programs for high-speed data
processing or on constrained hardware like
microcontrollers?

5

NOTE: In this book, I will
assume you are familiar
with the Smojo
programming language.

If you are not, I would
encourage you to complete
Smojo’s “Basic” tutorial
online.

Q2: Can we develop a framework for Smojo to C
generators that output clean, readable and optimised code
from such DSLs?

Exercises

1. Research the ioctl function in Linux. What might be
some advantages and problems using it?

2. Research the Video4Linux library (v4l2) mentioned
in the text. Is it easy to use? Why? (or Why not?)

3. Research the video libraries that you might use to
connect a camera for video capture in the Raspberry Pi.
(a) How many libraries are there? (b) Which are still in
use? (c) Which have been abandoned? What language
are these drivers or libraries written in?

4. Research the driver suite used for BBC’s Micro:bit
microcontroller. What language is it written in? What
“official” languages can you use to program the
Micro:bit?

5. How much RAM and storage does the Micro:bot
microcontroller have? Compare these specs against
that of the the official Arduino Uno.

6

Figure 1: BBC’s micro:bit is a
microcontroller designed for
children.

Figure 2: Arduino is a popular
microcontroller platform
(hardware and semi-standardised
software) for hobbyists and
industrial use.

	Introduction
	All About Metaprogramming
	Higher Level Languages
	The C programming language
	Drawbacks of Libraries
	Our Approach
	Why Smojo?
	Exercises

