Data Transformations

The Data Transformation Approach to Programming

Every programming language has its own “approach” or
“style” of programming. In C, it’s loops and pointers; in
Java you can’t do anything without objects. Lisp is about
manipulating list-like structures. And so on.

In Smojo, your programs are best thought of as a data
transformation pipeline.

The idea is you have a something (usually a data structure
like a hash or sequence) and your program transforms this
step by step from one form into the final form, which can
then be displayed or somehow consumed.

This way of looking at programming is fundamentally
different from the mindset needed for languages like C,
which emphasise looping.

To illustrate this difference, let’s suppose you were given
this programming challenge:

Find the sum of the first 10 squares
not divisible by 5

* A Smojo programmer would immediately think of this as
a series of data transformations.

» A C or Python or Java programmer might instead think
of this as writing a loop.

Both approaches are valid of course. But the data
transformation approach has many advantages if it is
suitable to be used.

To see this, let’s write a solution in C:

#include <stdio.h>

// Sum first 10 square not divisible by 5

int main(){

int sum = 0; // accumulator

int counter = 0; // keeps track of the no. of squares
int i = 1; // generates the squares

int sq; // temp variable for square.

while(1){

sq = ixi;

if(sq % 5 > 0){
sum += sq;
++counter;
if(10 == counter){
printf("Sum is:%d",sum);
break;

}
++1i;

}

return 0;

This solution illustrates many common features and

problems of loop-style thinking:

There are a number of state variables: sum, counter,

1 and sq that are hold important information.

The loop needs some halting criterion, in this case a
check that counter has reached 10.

Problem #1: The variables must be updated in the
right order. For example, if the counter increment
were moved past the halting criterion, that would not
result in the correct answer - see the figure on the right.
This isn’t easy to check and needs to be simulated.

Problem #2: You can’t easily deduce the problem
statement just by glancing at the code. This makes code
correctness harder to check. For example, the “buggy”
code on the right might be interpreted as “Find the sum
of the first 11 squares not divisible by 5”.

sq = ixki;

if(sq % 5 > 0){

sum += sq;

// ++counter;
if(10 == counter){

}

++i;

printf("Sum is:%d",sum);
break;

++counter;

Let’s see how the data transformation approach compares
with this.

A recipe for the solution might be:
1. Begin with all integers 1,2 ...

2. Find their squares

3. Remove those divisible by §

4. Get the first 10 elements

5. Sum them

6. Print the result

Each step here in this recipe is a data transformation over
an infinite sequence of integers. Here’s the code in Smojo:

sum
@ swap ['] + reduce

: not-divisible-by
[: nmod @ > ;] filter

1
2
3
4
5
6
7
8
9

square
[: dup * ;] map

square

5 not-divisible-by
10 take

sum

There are several features of this program:

* There are no state variables. This has many positive
implications for code reuse, optimisation and
parallelisation.

* There is no halting criterion.

* There are no variable updates, so the question of the

correct order is moot.

* You can easily deduce the problem statement just by
glancing at the code. This makes code correctness easy
to check.

Each of the words in this program define a transformation
of some kind:

* square converts a sequence of integers into their

squares using MAP

* not-divisible-by converts a sequence of integers

into a new sequence with the desired property using
FILTER

+ take truncates a sequence, making it finite

* sum transforms a sequence of integers into a single
integer using REDUCE

* . transforms an integer into nothing.
The key ingredients behind this style of programming are:
I. Sequences both finite and of indeterminate length,

2. XTs or lambdas as they might be known in other
programming languages. In our solution, quotations [:
.. 3] are used to create XTs.

3. Higher-order functions and lazy evaluation of
sequences. In this example, MAP and FILTER are both
lazy. They don’t perform their task immediately, but
rather only when their elements are read.

4. A way to convert a sequence into a single value. This
conversion is called a reduction and we use the word
REDUCE to do this.

Benefits of Using Data
Transformations

The data transformation approach is greatly beneficial:

* Debug easier since the transformation is done in
stages, not mixed up as it is in a loop. You can print the
results at any stage individually. This is very helpful
especially in larger programs.

* Amend the program easier since this means just
changing a single stage in the process. Useful for
example, if your program requirements change. Or if you
want to add functionality:.

* Reuse code better, since words like sum are now a
transformation rather than being mixed up in a loop.

The big takeaway is that this approach lets you tame
complexity, especially for transformation tasks.

Automatic code generation, which is one of the two
Big Ideas I describe in this book is about converting Smojo
into another language (in our case, O).

Counting Characters

To illustrate the point better, let’s solve a tutorial question
(Q4, under “Text and Strings” section of the Smojo
Tutorial):

Write a word COUNT that takes a
string and a character as arguments
and returns the number of occurrences
of the character in the string.

The official answer provided uses a BEGIN...UNTIL loop,
and the programming is hard to understand, especially

since it does not use locals, but just the stack and spare

: COUNT ("s" char -- d)
@ 0 >R >R
begin

over over R> indexofc2
R> 1 + >R

dup 1 + >R -1 = until

R> drop R> 1 -

stack to store temporary variables:

Here is the same solution in idiomatic C, using pointer
arithmetic:

#include <stdio.h>
int count(charx str, char c){
int n = 0;
while(kstr != 0){
if(kstr == c) ++n;
++str;
}
return n;
}

int main(){

charx str = "Hello World";

printf("Count=S%d\n",count(str,'1"));
printf("Count=%d\n", count(str,'e'));

return 0;

This is better than the “official” Smojo version, because it
reads the string character by character. Here is a simpler
Smojo version that reads the string character-by-character,
using a ITIMES loop:

Recall that ITIMES (n XT —) executes the XT n
times, each time feeding the XT the iteration number,
starting from zero. For example,

5 ' . itimes

char-at
dup 1+ substring2

count { str ¢ }
@ str length [: { 1 }

str i char-at ¢ same? -> 1+ |.
;] itimes

"hello world"” count
"hello world" count

will print the numbers o 1 2 3 4. There is also TIMES (n
XT —) that simply executes the XT n times, without
teeding it the iteration number.

The C version will have to be completely revised if a
Unicode string is used. The Smojo version will work for
unicode.

What the C and improved Smojo versions have in
common is that they need to maintain a variable — the
accumulator — in the case of C it is named n, and in the
case of Smojo it is anonymous and just an item on the
stack.

How might we apply the data transformation approach?

Start with a recipe for counting occurrences:

1. Split the string into a sequence of characters
2. Remove all characters not equal to the target
3. Find the length of the resulting sequence

4. Print the result

Here’s a solution using this recipe:

seqlen
@ swap [: drop 1 + ;] reduce

string>seq
""" tokenize array>seq

occurrance
string>seq
[: c same?
seqlen

"hello world" occurrance .

The word TOKENIZE (“string” “pattern” -
tuple) splits a string into an array of strings. The

pattern acts as a delimiter and can be a literal string or a

: get-month ucase
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC" swap indexof 3 / 1 +

"23-Aug-2023 12:35" "[-\s+\:]" tokenize => xs

Xs 2 @@ int
xs 1 @@ get-month
Xs 0 @a int
Xs 3 @@ int
ymdh .

Java regular expression. The output of TOKENIZE is a
tuple. Listing 7 shows a typical example using TOKENIZE.

ARRAY>SEQ (tuple — seq) converts a tuple (ie
array) into a sequence. We will use TOKENIZE and
ARRAY>SEQ a lot in the data transformation approach.

The pattern of transformations should be familiar by now:

* Begin with converting your data structure into a
sequence. In the previous example we did not have to,
but here I've used string>seq.

* You use a series of MAPs and FILTERs to shape your
initial sequence,

* It always ends with a reduction using REDUCE to get a
final answer.

Also, note that the transformations themselves might be
composed of transformations. For example string>seq
first converts a string into a tuple then from a tuple into a
sequence.

Exercises

1. Write a word CADDDR (seq —- *) to find the
fourth item in a sequence. Eg, {{ 1 2 3 4 5 6
7 }} CADDDR. should display 4 ok

2. How would you access the fourth element in a tuple
called Xxs ? Write the code.

3. Write aword SEQLEN (seq —- n) to determine
the length of a sequence. Eg, {{ "hello" 1 2 4
"world" }} SEQLEN . should display 5 ok. Hint:
You need to use quotations [: ... ;] and REDUCE

4. Write aword SUM (seq —=- n) that sums the
numbersinalist. Eg: {{ 1 2 3 4 }} SUM .
should display 10 ok. Hint #1 : follow the same
pattern as (Q3). Hint #2: ['] + is the same as [:
+ ;] but it is faster.

5. Write a word PRODUCT (seq —- n) that finds the
product of numbersinalist. Eg: {{ 1 2 3 4 }}
PRODUCT . displays 24 ok. Hint: This is a small
modification of your code from Q4.

6. What is the PRODUCT of this list: {{ 493921
512345 657839 712465 2134567
54123476 }} Do the results make sense? How can
you fix this?

10

II.

I2.

13.

14.

5.

Do you see any commonalities between PRODUCT and
SUM? Can you write a new word that captures these

commonalities and use it to re-write both PRODUCT

and SUM?

Write a word . SEQ that prints elements of a list, in a
single column. Hint: this follows the same pattern as Q3

- Qs.

Write a word EVEN (seq —- seq) that extracts
only even integers from a list of integers. Eg, {{ 1 2
3456 9 10 12 13 }} EVEN should result in
the sequence {{ 2 4 6 10 12 }} Hint: you need
touse [: ... ;] FILTER and modulus MOD.

. Write a word SQUARE (seq —-- seq) that squares

the integers inalist. Eg, {{ 1 2 3 }} SQUARE
shouldgive {{ 1 4 9 }} Hint:Use [: ... ;] MAP.
Does this work with 1 2 ... SQUARE ? How would
you test?

Re-do Q1o but using REDUCE instead of MAP. Hint:
You need to use NIL and CONS. What is the big
difference between using MAP and REDUCE?

Write aword PP (# ==) that neatly prints out the
key/value pairs in a hash. Hint: You need to use

quotations, REDUCE, #KEYS, and #@.

Given a sequence s = (s, 5, 5y, - - .), write a word SuUm3
(seq == seq) which produces a new sequence:
sum3(s) = (so+ 5, + 8y, 5+ 5, +53,...)

Generalize sum3 to sumN (seq n -- seq),
which is able to sum any length window n. sumN

should take the initial sequence and n as input.

In the original example, we found “the sum of the first
10 squares not divisible by 5” - can you write a program
that instead find the sum of the next 10 such squares?
Amend the solution already given in Listing 2. Also find
a solution in C by amending Listing 1.

	Data Transformations
	The Data Transformation Approach to Programming
	Benefits of Using Data Transformations
	Counting Characters
	Exercises

