
There are several words can concepts that you need to
thoroughly understand in this Session because they form
the basis of our approach to metaprogramming:

• What an XT is and how it differs from a Word. Using
EXECUTE to run an XT,

• PARSE and the token stream,

• TOKENIZE to split up a string and ARRAY>SEQ to
convert an array into a sequence,

• LITERAL to programmatically add any literal into a
Word,

• IMMEDIATE and the concept of immediacy,

• POSTPONE and how it affects immediate and ordinary
words.

These concepts may seem unrelated at first, but they form
the base upon which we will build all our subsequent
metaprogramming work.

NOTE: This topic can be difficult. To help your
understanding, I’ve added “Quizzes” to this Session.
Completing them will greatly aid your understanding.

XTs and Words
An XT — which are short for eXecuTable — is essentially
a potential action. An XT can be treated like any ordinary
literal (ie, a String, Number or Hash). It can be printed,
put on the stack, etc.

A Word is simply a (name, XT) pair. These pairs are
stored in Smojo’s dictionary. All words in Smojo are
stored this way. There are no “special” words in Smojo, all

1

Metaprogramming I
Beginning Metaprogramming with Smojo

are treated alike. You can access this dictionary as a hash
using GET-DICTIONARY (—- #). There is a
corresponding word SET-DICTIONARY (# —) that
replaces the dictionary with the given hash.

Quiz 2.0

Quiz 2.0.0: Write a word called WORDS (—) that
prints out all the words currently defined in the
dictionary. Note that there is already a built-in word
called WORDS. How does your version differ from the
built-in one? Hint: you need to use GET-
DICTIONARY and an amended version of PP from
Session 1.

Quiz 2.0.1: Write a pair of words m{ and }m that
temporarily replace the current dictionary with a
dictionary that only has the words + , - , * , and ..
In other words, m{ should save the current
dictionary and replaces it with your own one, and }m
restores the previously saved dictionary. Hint: you
need to use SET-DICTIONARY for both these
words.

What does m{ 1 2 3 + * . }m show? What
does m{ 24 dup . }m show? How might words
like m{ and }m be useful? Give this some
thought. We will discuss this topic extensively in
later sessions.

Getting an XT with Tick
We can get an XT either by extracting it from an existing
word using tick ' or bracket-tick ['] words. For example
the code below will print out the XT for the word DUP:

' DUP .

The output will vary because the internal XT used for DUP
will change every time you run a Smojo program.

2

The word bracket-tick ['] is used to get the XT from an
existing word. Here’s an example using it to reverse a list:

: reverse (list — list)
 nil swap ['] cons reduce
;
In this example, ['] cons finds the XT of CONS and
compiles it as a literal into the body of REVERSE. A
decompilation of REVERSE shows this clearly:

' reverse decompile

 which outputs:

[0] NIL
[1] SWAP
[2] Literal XT(59a8bc15)
[3] REDUCE
ok

The literal XT for CONS is XT(58a8bc15) on line 2, but
this will change every time you run the decompilation.

Quiz 2.1

Quiz 2.1.0: What is the difference between tick '
and bracket-tick ['] ? Why do we need two words
to extract the XT from an existing Word?

Quiz 2.1.1: In the word for REVERSE, replace [']
with ' and decompile it. What do you see? What
does that tell you?

Quiz 2.1.2: In the program ' reverse
decompile, replace tick with bracket-tick and run.
What happens?

Quiz 2.1.3: Use tick to get the XT of tick or bracket-
tick and print it out.

Quiz 2.1.4: Decompile tick or bracket-tick.

3

Quiz 2.1.5: What happens if you tick (or bracket-
tick) a word that does not exist?

The Token Stream and PARSE
Smojo is supposed to be strictly left-to-right, so how does
a word like tick ‘ work? It seems to jump ahead in the
input! Let’s break it down step by step:

1. Smojo reads any program (which is just text) as a
sequence of tokens. For example, the program:
"Hello World" . cr consists of 3 tokens:
"Hello World", . and cr. The program text is
broken up into tokens using the space character as a
delimiter, but special care is taken when handling
strings. This is called the token stream. It is
important to note that this splitting of the program
into tokens is not done all at once, but gradually, step
by step. This is what gives Smojo its left-to-right
behaviour.

2. Tick ' first looks one step ahead into the token stream
and places the token (ie, text) on the stack.

3. It then looks up the dictionary for the corresponding
XT, which is placed on the stack.

The word PARSE (char — “s”) lets you access the
token stream before it is read by Smojo. The input char
into PARSE tells it when to stop reading the token stream.
char is a single character, not a string and you need to use
the word [CHAR] to create a character. For example, the
program

[char] / parse Hello World/ . cr

Will print out:

Hello World
ok

In this example, the character / is used as a delimiter, so
PARSE will read the token stream until the character / is
first met. The character / itself is not included as an

4

output of PARSE. The effect it to put the text Hello
World on the stack. The normal Smojo flow then
resumes, and it executes . and cr.

IMPORTANT: PARSE works on the current line of text
only. It won’t read the token stream past the current line.

Quiz 2.2

Quiz 2.2.0: What happens if we use PARSE on an
empty line? Eg:

[char] \ parse

or where the character is never encountered, eg:

[char] x parse Hello World . cr

or where the character is the only thing available, eg:

[char] h parse h . cr

Quiz 2.2.1: Write a word XT-FROM-NAME
("name" — XT|null) that looks up the
dictionary for the given name and places the
corresponding XT on the stack. Hint: You need to
use GET-DICTIONARY.

Be sure your XT-FROM-NAME works for all cases,
eg: “Dup” XT-FROM-NAME . must work
correctly.

Quiz 2.2.2: Write a word NEXT-TOKEN that reads
the next token in the token stream. Hint: Use BL
(— char) which outputs the space character.
You need to use PARSE also.

Quiz 2.2.3: Does your word work if the user typed
in more than one space or a tab? Eg:

NEXT-TOKEN hello .

Should also output hello. Hint: You need to use
BEGIN … AGAIN

5

Quiz 2.2.4: Write your own version of tick ‘ using
NEXT-TOKEN and XT-FROM-NAME. Make your
version print out a warning if the word does not
exist. Eg, ' yabbadabbadoo should print out a
suitable warning.

Quiz 2.2.5: Write your own version of the line
comment word \ and the stack comment word
(Hint: You need to use [char] \n to represent
the end-of-line character.

Quotations
Another way to get an XT is to create it using a Quotation,
with the words :> … ; in interpretation mode and the
more common [: … ;] in compilation mode. For
example:

{{ 1 2 3 4 5 }} :> dup * ; map .list

or:

: square (seq — seq)
 [: dup * ;] map
;
{{ 1 2 3 4 5 }} square .list

In this example, a brand-new XT is created every time you
run SQUARE. Quotations are powerful because they allow
you to create XTs without naming a word, but also because
(and this is important) they bind locals into the
resulting XT itself. For example:

: greet ("message" — XT) { msg }
 [: msg . ;]
;

6

"hello" greet decompile cr
"world" greet decompile cr

will show:

[0] Literal(hello)
[1} .

[0] Literal(world)
[1} .

ok

indicating that each message (hello and world) is part
of the two XTs created by greet. Each invocation of
greet creates a new XT through the quotation.

To perform the action represented by an XT, we use the
word EXECUTE (xt — *) that takes an XT as input
and runs it. For example, continuing from the code above,

"hey joe" greet execute

will output:

hey joe ok

Quiz 2.3

Quiz 2.3.0: decompile greet and try to make sense
of every line in the decompilation.

Quiz 2.3.1: In the code for reverse, should we use

['] cons

or

[: cons ;]

Is there any difference?

7

Quiz 2.3.2: Why are Quotations useful? Why not
just use Words? Hint: Try to re-write the word PP
which prints a hash:

: pp (# —) { h }
 h #keys [:
 dup . "=" . h #@ . cr
 ;] reduce
;
without using Quotations. You can use ['].

Why are XTs Useful?
XTs are useful because they allow you to treat actions like
literals. For example, you can:

• save them to disk, send then over the internet, etc.
This is called serialisation. Smojo's chatbots (you can
see some here at https://smojo.ai) are serialised XTs.
Another example is cloud words (like smojo/doc)

• amend them dynamically, eg, create a new word
from an existing XT to perform additional tasks like
error detection or performance monitoring.

• easily implement advanced programming
techniques like late binding or temporary changes to
the dictionary (eg, the m{ ... }m of Quiz 2.0.1) which are
useful for metaprogramming. We will see these in later
sessions.

• use them as input into words. Examples are higher
order functions like MAP or REDUCE.

• they can be used to store data. XTs are not just
functions, they can also be used to store data in their
data section, a bit like an object in OOP. They differ
from traditional OOP because they are much simpler
and do not need cumbersome class definitions. We will
see an example of this when we re-create Smojo's
smojo/doc documentation system.

8

https://smojo.ai

Most of the power of Smojo derives from having XTs and
being able to create them easily.

Lastly, XTs can also be defined at runtime (that is, not
just created at runtime like objects in OOP). This is an
advanced use case and also an example of
metaprogramming, which we will not cover in this book.

These ideas may seem a bit abstract, so let's deep dive into
a an actual example.

Creating Getters and Setters
Suppose we have a key-value database, stored in a hash. Eg:

=> h

"name" "arnold" h #!

"country" "Singapore" h #!

"height" 180 h #!

h .

This code is "problematic" because we (a) need access to
the hash (b) need to remember the keys we used to store
the values. Ie, "Name" , "NAME" and "name" are all
different keys.

A better way is to create getters & setters to get and set
properties in the hash. For example:

\ Stores a name into our database.
: name! ("s" --)
 "name" swap h #!
;
\ Fetches the name from the database.
: name@ (-- "s")
 "name" h #@
;
Now we can use name! to store like so:
"arnold" name!
name@ . cr

9

Note, by convention, we use xyz! to denote a setter and
xyz@ for a getter.

However the problem now is that we have to also define
similar words for country and height. This is not too
bad, but what if we also needed getters/setters for more
properties like age gender address and email ? The
code for getters and setters would be error-prone to write
(since we are essentially writing the same thing) and clutter
our program.

We want to use Smojo's flexibility to our advantage. First,
our goal is to simply declare properties, eg:

prop: name height country age gender

prop: address email

and let Smojo automate the creation of all getters and
setters. We'll break down this process in several steps:

Step 0: We need a word to bind a (name, XT) pair into
the dictionary:

: bind ("name" xt --)
 get-dictionary #!
;
There is actually no need to define bind, since it is
already built-in. I mention it here for completeness and to
help in your understanding. A more cautious version of
bind would check if the name exists and warn the
programmer:

: bind ("name" xt --) { n xt }
 n xt-from-name null? not if
 "Overwriting:" . n ucase . cr
 then
 n xt bind \ previous version of bind
;
Notice that this version of bind overwrites the previous
one, but uses it. This is considered good style in Smojo,

10

where new functionality (like error checking) is layered
onto a previous version of the word.

Step 1: We need to define words to create a getter and
setter given a property name like "name" or "country". I'll
call these mk-! and mk-@. For example, mk-! is:

: mk-! ("property" --) lcase { s }
 s "!" concat
 [: (v --) s swap MY-DBASE #! ;]
 bind
;
There are several points to note:

• We use LCASE ("s" -- "s") to lower case the
property name, since by default, all words names are
expected to be lowercased.

• The quotation creates an XT that expects an input,
which is the value to save. We indicate this with the
stack comment on the quotation. Always do this as it
eliminates bugs.

• MY-DBASE is a # defined as a constant.

The code for mk-@ is similar and I've left this as an
exercise for you.

Step 2: We need to write a word args (|s -- seq)
that (i) reads in the token stream to the end of the line, (ii)
splits it using whitespace and (iii) converts it into a
sequence:

: args (|s -- seq)
 \ reads the token stream to EOL.
 [char] \n parse
 \ splits by whitespace into a tuple
 "\s+" tokenize
 \ converts into a sequence.
 array>seq
;
The use of PARSE should be familiar to you.

11

TOKENIZE ("s" "delim" -- tuple) splits a
string using the delimiter into a tuple. It takes in two
input, the string to split and a delimiter to split it with. For
example, "," TOKENIZE would split a string using
commas.

The delimiter we used in this example is "\s+" which is a
regular expression meaning "one or more whitespace
characters". You can find out more by searching for "Java
regular expressions" online.

Finally the word ARRAY>SEQ (tuple -- seq)
converts the tuple into a sequence.

We frequently use TOKENIZE and ARRAY>SEQ, so you
need to be familiar with these words.

Step 3: We need to write a word prop: that reads in the
properties and calls mk-@ and mk-! for each property.
We'll assume that the properties are always on one line:

: prop: (|s --)
 args [:
 dup mk-! mk-@
 ;] reduce
;
This last step completes the solution.

Quiz 2.4

Quiz 2.4.0: Write out all three steps and test out
your code. Be sure to complete the implementation
for mk-@.

Quiz 2.4.1: Suppose we wanted to use a comma , to
separate the property names. Eg:

prop: name , title , country

How would you do this? Test out your solution.

12

Immediate Words
Smojo has 2 separate modes of operation:

• Interpretation Mode: in which words are run when
they are encountered in the token stream,

• Compilation Mode: where words are compiled as they
are encountered in the token stream.

These modes are mutually exclusive. You are either in one
or the other.

Smojo always starts in interpretation mode, but there are a
few words that can switch Smojo from interpretation to
compilation mode:

• When a new Word is being defined using colon :

• When a new Quotation is defined using :>

• Using the mode switching operator]

In the first two cases, once the system is in compilation
mode, there is no way to switch back to interpretation
mode because all subsequent words are compiled. To get
around this, we have two classes of words:

1. Ordinary Words are compiled during compilation
mode. This is the normal scenario. Most words are like
this.

2. Immediate Words are executed during compilation
mode. They are not compiled. A good example of an
immediate words is ; which completes a word
definition and switches Smojo from compilation back
to interpretation mode. ; has to be immediate for it to
work.

You can check an XT for immediacy by using
IMMEDIATE? (xt -- f) , eg:

' ; immediate? . cr

13

Should display:

true
ok

You can also create your own immediate words using
(IMMEDIATE) (xt --). For example:

:> "hello" . cr ; constant fn
fn immediate? . cr
fn (immediate)
fn immediate? . cr
Will display:

false
true
ok

The word IMMEDIATE is used more often, to mark a word
as immediate, like so:

: greet (--)

 "hello" . cr

; immediate

' greet immediate? .

Will display:

true ok

Because greet is an immediate word, it is executed, not
compiled in compilation mode. For example, if we use
greet in another word as in Listing 1, we get the
unexpected response:

hello
before
after
ok
The initial hello is caused by greet executing when
use-greet is being compiled. Running:

14

Listing 1: Using GREET

' use-greet decompile

we see:

[0] Literal(before)
[1} .
[2} CR
[3] Literal(after)
[4} .
[5} CR

In other words, greet is nowhere to be found in the body
of use-greet.

Immediacy is very important for programming in Smojo,
but it only makes sense in conjunction with other words,
especially POSTPONE, LITERAL and others.

Quiz 2.5

Quiz 2.5.0: Is bracket-tick ['] an immediate word?
How about tick ' ? Think about it first, then check
your answers using IMMEDIATE?

Quiz 2.5.1: Is the word LITERAL an immediate
word? What does it do?

Quiz 2.5.2: Would the prop: word work in
compilation mode (ie, within a word)? How might
this be solved? We will revisit this point later in this
session.

Quiz 2.5.3: What do the words [and] do? Hint:
Read the "switching modes" section in the Smojo
Tutorial.

Postponing Immediacy
The word POSTPONE (|s --) is a word that
prevents an immediate word from executing during
compilation mode. POSTPONE is used very frequently in
Smojo metaprogramming. So much that there is a
common alias for POSTPONE, which is the back-tick `.

15

Don't confuse the back-tick ` (which is just POSTPONE)
with the tick '.

Listing 2 shows the greet & use-greet example using
POSTPONE. This time, if we decompile use-greet, we get a
very different result:

[0] Literal(before)
[1} .
[2} CR
[3} GREET
[4] Literal(after)
[5} .
[6} CR
ok

You can see on Line 3 that GREET has been compiled into
the body of use-greet. In other words,

POSTPONE greet

suppresses the immediacy of greet.

Quiz 2.6

Quiz 2.6.0: Run Listing 2 on the Smojo editor.
What happens if you run use-greet?

Quiz 2.6.1: Try changing line 7 of Listing 2 from
POSTPONE greet to POSTPONE DUP, then just
decompile use-greet. Does the result surprise
you? Try changing DUP to ; and decompile again.
Does POSTPONE treat ordinary and immediate
words the same way?

I will not discuss postponing ordinary words in this
session as that is an advanced topic.

Example #1: Bracket-Tick
Bracket-tick ['] might be defined this way using
IMMEDIATE, POSTPONE and LITERAL:

16

Listing 2: Using POSTPONE

: ['] (|s --)
 bl parse lcase
 xt-from-name ` literal
; immediate

• The first line bl parse lcase extracts the name of
the word as a lowercase string. Recall that BL is just the
empty space character.

• The second line gets the XT from the name and makes a
literal from it. XT-FROM-NAME ("name" -- XT|
null) looks up the XT from the current dictionary
using the given name. LITERAL is an immediate word,
so its execution needs to be suppressed using
POSTPONE. I've used alias back-tick ` for POSTPONE.

• We also need to mark ['] as an immediate word,
since it needs to be executed during compile mode.

• I've used the notation |s in the stack comment to
indicate that ['] reads from the token stream.

Although this is a short example, it is not an easy one to
understand: You must become familiar with the idea of
interpretation/compilation modes and immediacy.

Quiz 2.7

Study the code for bracket-tick above carefully.

Quiz 2.7.0: What would happen if it were not made
immediate? What would happen?

Quiz 2.7.1: What is the purpose of POSTPONE
LITERAL? What would happen if this was omitted,
or if just POSTPONE was omitted?

Quiz 2.7.2: Does PARSE read the next token ie,
lcase? Explain your answer clearly. Hint: Is PARSE
an immediate word or not? When will it be executed?

17

Quiz 2.7.3: Amend this code to suitably warn users
that the XT does not exist if XT-FROM-NAME
returns a null value. Ie,

: xyz
 ['] yabadabadoo
;
Should give a warning saying that "yabadabadoo is an
unknown word"

Hint: null? (x -- f) can check for a null
value.

Example #2: Constants
Constants in Smojo are used to emulate a fixed value. For
example, consider the use of a constant called NUMBER:

23 constant NUMBER
: xyz (--)
 NUMBER . cr
;
If xyz is decompiled (using see xyz or ' xyz
decompile), we obtain:

[0] Literal(23)
[1} .
[2} CR
ok

You can see clearly that the literal value of the constant is
present in the XT of xyz.

How can we create such a word constant by ourselves?
Let's think through the steps:

1. First, the word created by constant is named
NUMBER, and it needs to be executed in compilation
mode. This means NUMBER must be immediate.

2. The action of NUMBER when Smojo is in compilation
mode is to compile the literal it represents into the

18

body of the XT currently being defined. In the example
above, it means NUMBER needs to compile in the literal
23 into the body of xyz.

3. If NUMBER is executed in interpretation mode, it needs
to put the value it represents on the stack.

Let's turn this recipe into code:

In step 1, the syntax of constant is that it expects a value
on the stack and a name on the token stream ahead. Eg,

23 constant NUMBER

means that 23 is already on the stack while NUMBER is
ahead of constant in the token stream. So, at the very
least, constant needs to save the value 23 and read the next
token:

: next-token (|s -- "s") bl parse ;
: bind ("name" XT --)
 get-dictionary #!
;

\ INCOMPLETE!
: constant (v |s --) { v }
 next-token lcase \ name of const.
 [:
 \ TODO!
 ;] bind
;

This code is of course incomplete (we need steps 2 and 3),
but you should understand the basic structure. The above
code completes Step 1. Note that next-token and bind
are actually built-in words -- so they do not need to be
defined -- but I have included them here just for
completeness. We use lcase to convert names like
NUMBER into number, as this is the standard form used in
Smojo's dictionary.

19

For Steps 2 and 3, we need to use the word

COMPILATION? (-- f)

that tells us if Smojo is in compilation mode (true) or
not. With this, we can easily complete the code for
constant:

\ STILL INCOMPLETE!
: constant (v |s --) { v }
 next-token lcase \ name of const.
 [:
 v compilation? -> ` literal |.
 ;] bind
;
This version is still incomplete because the XT created by
constant is not immediate. We use the word:

(IMMEDIATE) (xt --)

to make any XT into an immediate one. So finally we have:

\ FINAL VERSION
: constant (v |s --) { v }
 next-token lcase \ name of const.
 [:
 v compilation? -> ` literal |.
 ;] dup (immediate) bind
;

Quiz 2.8

Quiz 2.8.0: Create your own constant using the
code above and test it throughly. Make sure it works
in interpretation mode, and compilation mode for
both ordinary words and also within Quotations.

Quiz 2.8.1: Make a new form of constant that will
warn users if the name used by the constant already
exists. Eg:

20

123 constant HELLO

"Hello" constant HELLO

Will generate a warning "WARNING: Word
HELLO exists."

Should we abort in such circumstances?

Quiz 2.8.2: Why are the names of words in Smojo's
dictionary always stored in lowercase? What do you
think is the rationale?

Example #3: Special Contexts
The ability of Smojo's dictionary to be amended by Smojo
programs has many practical applications.

Especially for metaprogramming, we will need names like
+ or - or dup to take on new meanings temporarily.

As a practical example, suppose we want to temporarily
use the symbols +, -, * and / to mean arithmetic between
two sequences, instead of two numbers. But we don't want
to replace the ordinary meaning of these arithmetic
symbols permanently, only temporarily.

To do this, we create a pair of context switching words,
for example v{ and }v to temporarily save the old
meanings of our words, then put in the new ones.

In other words:

• v{ would save the current dictionary to a variable, and
replace it with one containing our new words,

• }v would restore the saved dictionary.

• So, outside v{ ... }v, the arithmetic symbols would
have their original meaning,

• inside v{ ... }v they would mean arithmetic over
sequences.

Here's how it could be done:

null variable OLD-DICTIONARY

21

: }v (--)
 OLD-DICTIONARY @ set-dictionary
;

\ INCOMPLETE:
: export-words (-- #) ;

: v{ (--)
 get-dictionary OLD-DICTIONARY !
 export-words set-dictionary
;

This code is complete except for EXPORT-WORDS that we
used to load our custom words into a new hash. There are
many ways to do this:

• A simple way is to assume that the words we want to
export into the special context v{ ... }v have a standard
prefix, eg _+ or _* Here, the underscore is used to
prefix and to separate _+ from + in the original
dictionary.

• Another way is to explicitly say what the out-context
and in-context names are. Eg, we could explicitly specify
that _+ in the out-context is now called + in-context.
This way, we don't need standard prefixes.

• Another way is to use Smojo's module system and
specify which of these we want to export.

All three methods are valid. However, I will illustrate using
the second method.

Let's say we already have these words:

\ adds 2 sequences.
: s+ (seq seq -- seq) ['] +. zipwith ;
\ subtracts 2 sequences.
: s- (seq seq -- seq) ['] -. zipwith ;

22

\ Multiplies 2 sequences pairwise
: s* (seq seq -- seq) ['] *. zipwith ;

\ multiplies seq with num
: c* (seq n -- seq) { n }
 [: n *. ;] map
;

\ divides seq with num
: c/ (seq n -- seq) { n }
 [: n /. ;] map
;

\ Raises to a power
: c^ (seq n -- seq) { n }
 [: n ^ ;] map
;

\ Finds the sum of a sequence
: sumseq (seq -- n)
 0 swap ['] +. reduce
;

These 7 words encompass all common operations in linear
algebra, if vectors were represented by sequences.

For example, we can express the dot product between two
vectors as:

: dot (seq seq -- n) s* sumseq ;

Our goal is to create a special context v{ ... }v where we
can more naturally write:

: dot (seq seq -- n) ** sum ;

23

This may seem a lot of work for very little payoff ! But
consider the following:

1. For realistic metaprogramming work we need to
redefine many basic Smojo words. To use _: , _; etc
directly in our code is confusing and causes errors.
Much better to use : , ; etc. Easier to write and read.

2. If we redefine basic words in the dictionary, that would
alter subsequent words. Eg, if we redefine : directly
without giving it a new name, subsequent definitions
would use this redefined version of :. This can often
cause subtle errors or hard-to-debug crashes. Best to
cleanly separate new words from old ones, like I've
done above for the vector arithmetic example. None of
the new words exist in the original dictionary.

The technique I outline here sidesteps both these series
issues by (a) giving our new words a distinct name in the
original dictionary but (b) temporarily renaming them
within the special context.

Like most programming languages, Smojo has a module
system (we'll take a closer look at this in Example #4), but
using modules won't solve problem #2.

In short, it's true the vector arithmetic example above isn't
super practical. I've chosen it because it is easy to
understand. Going forward, here's how we might define
EXPORT-WORDS:

: copy-dictionary (-- #)
 # { h }
 h get-dictionary >#
 h
;

: export-words (-- #)
 copy-dictionary { h }
 "+" ['] s+ h #!
 "-" ['] s- h #!

24

 "**" ['] s* h #!
 "*" ['] c* h #!
 "/" ['] c/ h #!
 "^" ['] c^ h #!
 "sum" ['] sumseq h #!
 h
;
With this completed, our new v{ ... }v should work as
expected. Note that all the original Smojo words are
imported by copy-dictionary. Just a few words (5) are
overwritten and two new words are defined (** and sum).

Quiz 2.9

Quiz 2.9.0: Copy paste this code into your Smojo
editor and get it to work. Test out:

v{

: dot (seq seq -- n) ** sum ;

{{ 1 2 3 4 5 }} {{ 3 4 5 6 7 }} dot .

}v

Quiz 2.9.1: Can we access words like * and - with
their original meaning within v{ ... }v ? Is this a
problem? If so, how would you overcome it?

Quiz 2.9.2: It quickly becomes tedious, impractical
or error prone to manually bind the new names.
Write a word % (# | new old -- #) that
uses our old friends PARSE, TOKENIZE , XT-FROM-
NAME and IMMEDIATE to do this binding
automatically. Eg:

: % (# | new old -- #) ;

: export-words (-- #)
 #
 % + s+

25

 % - s-
 % * c*
 ...
;
Use this in your new EXPORT-WORDS and test.

Quiz 2.9.3: Your friend Joe wants to extend % so
that it can read multiple words, separated by a
comma, eg:

% + s+ , - s- , * c*

Is this a good idea?

Example #4: Modules
Smojo's module system is built entirely using the basic
metaprogramming words and the words get-
dictionary and set-dictionary, along with the
usual data structures.

Listing 3 shows a simple module called *XYZ containing 2
words, hello and goodbye.

Modules help to manage namespaces. In this example,
the words hello and goodbye only exist within the
module, not outside it. Also, if there is another hello
defined outside the module, *xyz's hello will not
overwrite it. You can activate *xyz's words by prefixing
with *xyz. Eg,

: hello (--)
 "How are you?" . cr
;
hello \ Prints How are you?
*xyz hello \ Prints Hello

How is this done? Essentially:

26

Listing 3: A simple module

1. module saves the name of the module as the next
token in the token stream (using bl parse lcase)

2. It then saves a copy of the current dictionary (using
get-dictionary) and creates a copy of the current
dictionary (using clone) and replaces the dictionary
with the clone (using set-dictionary).

3. From this point on, all newly defined words are saved to
the cloned dictionary. The original saved version is
untouched.

4. The word end-module completes the module. It first
creates an empty hash to store the newly defined
("name",XT) pairs. Let's call this hash h.

5. It then compares the XTs in the cloned version with
that of the original dictionary. If an XT is in the cloned
version but not in the original, it is added to h.

6. Once this is done, it reverts the dictionary to the
original version, using set-dictionary.

7. It creates an XT using a Quotation. This XT looks
ahead in the token stream to determine which module
word is called, then retrieves the XT from h.

8. Lastly, the end-module word binds the newly-created
XT with the name of the module, using BIND (which
we've met earlier, and is based on get-dictionary).

This is a lot of steps! Don't worry if you don't understand
it all right now. Let's start with the code:

null variable OLD-DICTIONARY

null variable MODULE-NAME

These are our global variables, storing the original
dictionary and name of the dictionary. Continuing:

: module (|s --)
 bl parse lcase MODULE-NAME !
 get-dictionary OLD-DICTIONARY !
 copy-dictionary set-dictionary

27

;
I've re-used copy-dictionary from Example #3 above.
That's it for the module word. We can now work on the
helpers required for end-module:

We first need a word to get all the new words defined in
the cloned dictionary:

: lookup (# -- #)
 # { h }
 #values [: dup h #! ;] reduce
 h
;

: get-new-words (-- #)
 # { h }
 OLD-DICTIONARY @ lookup { p }
 GET-DICTIONARY { d }
 d #keys [: { n } \ name of the word
 n d #@ { xt } \ its XT
 \ Ignore words that are
 \ in the old dictionary
 xt p #contains? -> exit |.
 \ Save the new word into H
 n xt h #!
 ;] reduce
 h
;
This code simply carries out Step 4 & 5. The lookup
word creates a lookup table based on the input dictionary.

With these helpers we can finally build the end-module
word. We'll do this in a few steps:

\ DRAFT #1 -- INCOMPLETE!

: end-module (--)
 MODULE-NAME @ \ Step 1

28

 get-new-words { h } \ Step 2
 \ Step 3
 OLD-DICTIONARY @ set-dictionary
 [: (|s --)
 \ ... TODO ...
 ;] dup (immediate) \ Step 4
 bind \ Step 5
;
In this first draft, you can clearly see that end-module

1. Reads the module name. This is just stored on the
stack.

2. Calculates the (name,XT) pairs of the newly created
words. This is saved into the local h.

3. Restores the old dictionary. This has to be done after
Step 2. Why?

4. We make the XT immediate so that it will execute even
during compilation mode.

5. Lastly, we bind the name of the module (already on the
stack in Step 1) to the incomplete XT. This XT is (|s
--) meaning it expects the name of the word to
lookup on the token stream. For example, *xyz
hello, the *xyz is the name of the module and it
needs to find the word named hello within the hash
h.

A simple way to implement Step 5 is to directly check the
hash h:

: execute-or-compile (XT --)
 compilation? -> compile, exit |.
 execute
;

29

\ DRAFT #1 -- COMPLETE, BUT CAN BE
\ IMPROVED.
: end-module (--)
 MODULE-NAME @
 get-new-words { h }
 OLD-DICTIONARY @ set-dictionary
 [: (|s --)
 bl parse lcase
 h #@ execute-or-compile
 ;] dup (immediate) bind
;

h #@ retrieves the XT if it exists and executes or compiles
it.

The helper execute-or-compile (xt --)
behaves differently depending on whether it is called in
compilation mode (in which case the XT needs to be
compiled) or executed in interpretation mode. The word
COMPILE, (xt --) compiles the given XT into the
current word.

This solution isn't great. That's because the module's
collection of words are inaccessible to other words, since h
is "hardcoded" into the XT itself. You can't easily access it.

What could we do if the hash h were accessible to other
words? Well, here are some ideas:

• We could create a word to list the functions on any
module,

• We could iterate through the module's words and
sandbox them for security,

• We might add to the hash new words, for example for
documentation.

• We could rename the module words dynamically if there
is a name clash,

30

• We could introduce checksums to prevent tampering
with the words.

None of this is possible if h is hidden within the XT's body
as a literal.

So, to expose h, we make use of the XT's data section.
This gives us 2 problems we need to solve:

1. How do we add h to the XT's data section? The answer
is by using the comma , word. This has to be done just
after the XT is being created. So we have to use the
mode switch words [...] to temporarily drop into
interpretation mode.

2. The second problem is how to retrieve h from the XT's
data section when it is being executed? The answer is
to use the built-in word self (-- XT) that puts
itself on the stack. Once the XT is on the stack, we can
use @ to fetch the hash h.

Here's a solution for the XT part alone:

[: (|s --)
 [h ,] \ add h to the data section.
 bl parse lcase \ name of word to find.
 self 0 @ #@ \ get XT from stored h.
 execute-or-compile
;]
In this code,

• The phrase [h ,] simply means switch to
interpretation mode, then adds h to the data section of
the XT that is being defined. And then restores
compilation mode.

• self 0 @ #@ means first put the XT on the stack,
then read the zeroth-index element from the data
section (this will be the hash h) then retrieve the XT of
the word from this hash. Remember the name of the
word is already on the data stack from the earlier bl
parse lcase.

31

This brings us to the final version for end-module:

\ FINAL VERSION
: end-module (--)
 MODULE-NAME @
 get-new-words { h }
 OLD-DICTIONARY @ set-dictionary
 [: (|s --)
 [h ,]
 bl parse lcase
 self 0 @ #@ execute-or-compile
 ;] dup (immediate) bind
;
It helps to think what we have just done: We have built a
usable module system from scratch using just a few
metaprogramming words: parse, literal,
immediate, postpone, latestXT, compilation?,
compile, , [,] and ,. With these words and a couple
more, we can essentially change Smojo to our liking.

Quiz 2.10

Quiz 2.10.0: Copy paste the code for modules into
your Smojo editor and get it to work. Be sure to test
it out thoroughly.

Quiz 2.10.1: The built-in module system does not
warn you if the word does not exist in the hash h.
Amend the module code so that it does.

Quiz 2.10.2: Write immediate in terms of
(immediate) and some other metaprogramming
words.

Quiz 2.10.3: I mentioned one of the benefits of
putting the hash h into the module's data section is
that it would allow you to do many things, including
listing the words in a module. Write a
word .MODULE (|s --) that does this. Eg,

32

.module *xyz

Should list out all the words in *xyz.

Quiz 2.10.4: How would you add documentation
capabilities to a module? Discuss this.

Notes on SELF
I will end by saying that we can also define self (--
XT) using our friends postpone , literal,
latestXT and the switch mode words [and]:

: (self) latestxt ` literal ;

: self
 ` [
 ` (self)
 `]
; immediate

This code is an advanced usage of metaprogramming
words. You don't have to understand how it works for now.
It relies on the behaviour of postpone for ordinary
words, since (self) is an ordinary word. I haven't
explained this yet. We will cover this in later sessions.

You only need to know what self does:

• At compilation time, it compiles the XT of the currently
defined XT into itself.

• At execution time, the result is to place the XT on the
stack.

self is often useful when we are dealing with data from
the XT's data section.

33

Summary of Words

PARSE (char -- "s") reads the token stream until
the delimiting character char is met. It places the text it
reads onto the stack. The token stream is resumed just
past char.

[CHAR] (|s -- char) converts the next token into
a character. \t means the tab character, \n the end of line
character.

TOKENIZE ("s" "delim" -- tuple) splits s into
a tuple using the regular expression delim. Simple regular
expressions are "" which splits the strings into single
characters, "\s+" which splits it using one or more
whitespaces. More examples can be found online by
searching "Java Regular Expressions" which is what Smojo
uses.

ARRAY>SEQ (tuple -- seq) converts an array into
a sequence.

LITERAL (x --) is an immediate word that takes
whatever is on the stack and converts it into a literal. This
is needed when you want to create a word that can compile
literals into another word.

• We've seen it used in ['], where it compiles the XT of
the ticked word into the currently defined word as a
literal.

• We've also seen it used in constant, where it compiles
the value of the constant into the word where the
constant is used.

• Lastly, we've seen it in self, where it is used to
compile the literal value of the XT into itself.

It will take you some time to really get a good feeling on
how to use literal.

(IMMEDIATE) (xt --) makes the given XT
immediate. This is a one-way ticket: there is no easy way to

34

remove immediacy except to define a new non-immediate
word.

IMMEDIATE (--) uses the latestXT and makes it
immediate.

POSTPONE (|s --) temporarily prevents an
immediate word from executing during compilation mode.
It compiles the word into the currently defined word.

• POSTPONE must only be used in compilation mode. It
cannot be used in interpretation mode.

• POSTPONE of an ordinary word (eg, like DUP) is
different from postponing an immediate word. We will
discuss this in later sessions, but we have seen an
example of this usage in self.

• A common alias for POSTPONE is back-tick `.

GET-DICTIONARY (-- #) and its companion SET-
DICTIONARY (# --) get and set the current
dictionary. All words in Smojo are stored on the dictionary
as ("name",XT) pairs. These are a very useful pair of words,
as we have seen.

LATESTXT (-- xt) puts the last defined XT on the
stack. This word is often useful in metaprogramming.

SELF (-- xt) is a word with two different actions: In
compilation mode, it compiles the current XT into itself as
a literal. When it is executed in interpretation mode, the
XT is put on the stack.

[and] are mode switching words. Both are immediate
words that switch compilation/interpretation modes. A
common example is their use in adding to the data section
of a currently defined word (we saw this in Example #4:
Modules), but a more advanced usage is in switching
modes in another word, as we saw in the definition of
self.

COMPILE, (xt --) compiles the given XT into the
currently defined word.

35

Here is a last fun example using the words above and
COMPILE, to create an XT at runtime:

\ This is a simple program supplied as a
\ sequence.

{{
 "Hello"
 ' .
 ' cr
 "World"
 ' .
 1
 2
 ' +
 ' .
}} => MY-PROGRAM

\ This is how we can check if something
\ is an XT.
: xt? (x -- f)
 "com.terraweather.mini.XT" instanceof?
;

\ Compiles XTs but makes everything else
\ a literal
: (program) (seq --)
 [:
 dup xt? -> compile, exit |.
 ` literal
 ;] reduce
;

\ Runs (program), much like how
\ self works.
: program, (--)

36

 ` [
 ` (program)
 `]
; immediate

\ Main word that creates a custom XT
\ using data from a sequence.
: prog (seq -- xt)
 [: program, ;]
;

\ Test decompilation and execution:
MY-PROGRAM prog decompile cr
MY-PROGRAM prog execute

Quiz 2.11

Quiz 2.11.0: Copy paste this code into your Smojo
editor and get it to work. Try creating different
programs.

Quiz 2.11.1: How might we remove the use of tick '
in specifying the program? Hint: use xt-from-
name and use strings instead. Eg, use "cr" not '
cr

Quiz 2.11.2: From your answer in 2.11.1, write a word
EVAL ("program" --) that evaluates a string
as a Smojo program. Hints:

• Write a word convert ("s" -- seq) that
transforms the input program into a sequence of
XTs , integers and Strings, like we had in MY-
PROGRAM.

• You need to use tokenize and array>seq.

37

• You also need to use [regex] to test if something
is an integer. Eg:

: integer? ("s" -- f) [regex] \d+ ;

• You need a way to tell if something is a string. For
now, you could use single-quotes '

Test out your work with the following program:

" 'Hello' . cr . cr 1 2 + ." eval

Quiz 2.11.3: If you have successfully completed
2.11.2, then think about how you might represent
strings with spaces. Hint: You might want to be lazy
and replace spaces with underscores. That is an easy
solution. Handling actual spaces is much harder. You
would have to make convert do more work to keep
track of strings.

Quiz 2.11.4: If you completed the above, you are
very close to defining Smojo in Smojo. Give some
thought how this might be done!

38

	Metaprogramming I
	Beginning Metaprogramming with Smojo
	XTs and Words
	Quiz 2.0
	Getting an XT with Tick
	Quiz 2.1
	The Token Stream and PARSE
	Quiz 2.2
	Quotations
	Quiz 2.3
	Why are XTs Useful?
	Creating Getters and Setters
	Quiz 2.4
	Immediate Words
	Quiz 2.5
	Postponing Immediacy
	Quiz 2.6
	Example #1: Bracket-Tick
	Quiz 2.7
	Example #2: Constants
	Quiz 2.8
	Example #3: Special Contexts
	Quiz 2.9
	Example #4: Modules
	Quiz 2.10
	Notes on SELF
	Summary of Words
	Quiz 2.11

