
In this session, we will cover a few seemingly disjoint 
topics which complete our metaprogramming toolbox: 

• The data section, especially for Quotations. We will 
look at how the data section for Quotations can be set 
using the COMMA , and [ ... ] words, and how you can 
access the data section using SELF. We will also look at 
the definition of SELF. We will also see how the mode 
switching words [ and ] are different from other 
immediate words. 

• LITERAL and how it is used in greater depth. There is a 
very common design pattern using LITERAL, called the 
Injector/Payload/Host pattern. Once you see this, 
you can easily spot it in previous examples.

• Flow Control is how your program decides to perform 
jumps and conditionals. We will look at the big 3 words 
for creating flow control words: IF, AHEAD and THEN. 

• Lastly, we will show you how you can add parsers (not 
to be confused with the PARSE word) so you can 
directly change Smojo's syntax. For example, we will see 
how you can add rational numbers (like 1/2 or 3/4) to 
extend Smojo's pre-built syntax for numbers. 

The Data Section
Let's start with a review of the Data Section. As you now 
know, Smojo words are just ("name", XT) pairs in Smojo's 
dictionary. You can access these pairs using GET-
DICTIONARY ( -- # ). 

Each XT has:
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• a code section to store code that governs its behaviour. 
This code section can be executed using the word 
EXECUTE ( xt -- ) 

• a data section to store data for this XT. The data 
section must be defined when the XT is being created. 
Once created, the XT may no longer be amended. To 
create the data section we use the COMMA , ( v 
-- ) operator. COMMA implicitly inserts the item on 
the top of stack (v) into the word that is being created.

The data section is important since many 
metaprogramming techniques depend on its use: In 
Session 2's Example 4, when we built the module system, 
usage of the data section was crucial.

Here's a simple example storing two numbers into a word 
XYZ: 

: xyz ( -- )  
 [ 43 , 21 , ]  
 "Hello World" . cr  
;   
\ Read the data section of XYZ:  
' xyz 0 @ . cr \ 43 ok   
' xyz 1 @ . cr \ 21 ok 

Note that the phrase [ 43 , 21 , ] will run during 
the creation of XYZ's XT, and this places 43 then 21 into 
the data section of XYZ. This works because [ ... ] are 
both immediate words, and they switch modes temporarily 
so that the , word can build the data section. 

The FETCH word @ ( xt n -- v ) retrieves the value 
v from the given XT. n is just the index needed. You can 
omit n if it is zero. Eg, 

' xyz @ . cr \ 43 ok -- no need for n 

You can use the STORE ! ( v xt n -- ) word to 
store a new value into the slot n of an XT's data section: 

123 ' xyz 0 ! \ Replace 43 with 123  
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' xyz @ . \ 123 ok 

Note that you can only use ! to store data only if the slot 
exists on the XT's data section. Otherwise you will get an 
error. For example, 

"abc" ' xyz 23 ! \ !ERROR!

will raise an error because slot 23 does not exist.  

Quiz 3.0 

Quiz 3.0.0: Run this example. Store a third value in 
XYZ's data section. 

Quiz 3.0.1: The number of items you can store in 
the data section is fixed at creation time. Is this a 
severe limitation? How might you change the 
number of items stored in the data section even after 
the XT is created? Hint: What data structures would 
you use? 

The pattern [ value , ] can also be used in Quotations. 
For example, suppose our XYX now makes an XT: 

: xyz ( -- xt ) 
 [:   
  [ 43 , 21 , ]  
  "Hello World" . cr  
 ;] 
; 

\ Run XYZ to create the XT: 
xyz => h 
\ Read the data section of the XT:  
h 0 @ . cr \ 43 ok
h 1 @ . cr \ 21 ok 
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Quiz 3.1 

Quiz 3.1.0: Run this example. Replace the first slot 
with a hash. 

Quiz 3.1.1: If we ran XYZ twice, and saved the XTs 
each time (say h1 and h2), would changing the first 
slot value in h1 affect h2? Test this idea out with 
some code to check your answer. 

Quiz 3.1.2: Do you notice something strange about 
our new XYZ? Hint: are [ and ] immediate words? 
Run a decompilation of XYZ. What do you notice? 

By right, immediate words should execute during 
compilation mode. But in the example XYZ above, [ and ] 
although they are immediate, do not execute during the 
definition of XYZ! Instead, they are compiled. 

This detail is very important: [ and ] in quotations are 
only executed during the creation of the quotation, not 
during its definition. In our example, the Quotation is 
defined when XYZ is defined, but it is only created with 
XYZ is being run.  

This exception only applies to [ and ]. They are special. 
All other immediate words are indeed executed when the 
enclosing word is defined, as we would expect.

This exception to the behaviour of [ and ] allows us to 
design the data section of quotation. Without it, we 
cannot build data sections of quotations easily. 

References
As you might have noted by now any locals used by word 
are "frozen" when they are used in a quotation. For 
example: 
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: mk-greet ( "s" -- xt ) { s }  
 [:   
  "Hello" . s . 
 ;] 
; 

\ Run XYZ to create the XT: 
"arnold" mk-greet => h 
\ Run the XT:  
h execute \ Hello arnold ok 
\ Decompile the XT: 
h decompile  

Will result in the decompilation below:  

[0] Literal(Hello)
[1} .
[2] Literal(arnold)
[3} .
ok

In this decompilation, you can see that the input string 
"arnold" which was bound to the local s is now hard-
coded as a literal in the body of the resulting XT (line 2). 

This behaviour, known as lexical binding is an important 
feature because helps us avoid difficult bugs and has many 
other benefits. But in many cases, we want to initialise a 
local (eg, a counter), then change it in within the 
quotation. 

For example, suppose we want to create a quotation that 
keeps track of how many times it is executed: 
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\ !WON'T WORK!  
: xyz ( -- xt )  
 0 { n }  
 [:   
  "Hello" . n . cr 
  n 1 + { n } 
 ;] 
;

xyz => h  
h execute \ Hello 0 
h execute \ Hello 0 
h execute \ Hello 0 

We would expect the counter to increase (eg, Hello 0, 
Hello 1 and Hello 2), but this doesn't happen because 
of lexical binding. A decompilation of h shows why: 

[0] Literal(Hello)
[1} .
[2] Literal(0)
[3} .
[4} CR
[5] Literal(0)
[6] Literal(1)
[7] +
[8] write local: >n<
ok

Line 2 which we expect to print the local n will instead 
show the literal 0 every time. There is a local n created on 
the XT (line 8), but it is bound to the same value: 0 1 + 
= 1, and this local is never used within the XT. All of this 
is because of lexical binding. 

To get around this, we can build something called a 
reference. There are many ways to do this, but a simple 
one is to utilise the data section of an XT: 
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: ref ( v -- ref ) 

 [: [ , ] ;]   

; 

\ WORKS!  
: xyz ( -- xt )  
 0 ref { n }  
 [:   
  "Hello" . n @ . cr 
  n @ 1 + n !  
 ;] 
;

xyz => h  
h execute \ Hello 0 
h execute \ Hello 1 
h execute \ Hello 2 

REF ( v -- XT ) creates an XT with one item in its 
data section, which is the input v of the reference. 
Subsequently, even with lexical binding, we can still use @ 
and ! to fetch and store values into this XT. 

Note: REF is a built-in word. 

Quiz 3.2 

Quiz 3.2.0: Run this example. How would you start 
the counting at 1 instead of 0? 

Quiz 3.2.1: Carefully study the definition of REF. 
Do you understand how it works? If you do, propose 
how you might find a different way to write REF 
without using Quotations. What other changes 
would you have to make? Write some code to test it 
out. 
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Quiz 3.2.2: If we ran XYZ twice, and saved the XTs 
each time (say a and b), would running a affect the 
values printed by b? Test this idea out with some 
code to check your answer.

Quiz 3.2.3: How might we re-write XYZ so that 
running a would affect b and vice-versa? Ie, 

a execute \ Hello 0

a execute \ Hello 1 

b execute \ Hello 2 (not Hello 0) 

a execute \ Hello 3 (not Hello 2). 

Write your code and test to ensure it works. Hint: 
You need to use the data section of XYZ.

Quiz 3.2.4: Is there another way to accomplish Quiz 
3.2.3 without using the data section of XYZ? Hint: 
You need to define a global variable. 

Using LITERAL
One of the things that confuses beginners learning Smojo 
metaprogramming is when and how to use LITERAL. 

In almost every case I can think of, usage centres on a 
simple design pattern called Injector/Payload/Host:

• The Payload is the literal that needs to be inserted. 

• The Host is the word into which the literal Payload is 
inserted into.  

• The Injector is a word that actually injects the 
Payload into the Host word. The Injector is always 
immediate. 

A typical use case is outlined below. In this example, the 
payload is a string, "Hello World". In more realistic 
scenarios, the payload will be far more useful. 
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\ Injector 
: inject ( -- )  
 "Hello World" \ Payload  
 postpone literal  
; immediate  

\ Host 
: host ( -- )  
 "Hey" . cr  
 inject . cr \ Injection done 
; 

In the code above, the three important things are: 

1. The Injector is always immediate. 

2. It always contains (or calls) a POSTPONE LITERAL 

3. It somehow needs to have access to the Payload when 
it is executed. 

I'll give you two common examples of this pattern which 
we've seen already in Session 2: 

\ Injector 
: ['] ( |s -- )  
 bl parse xt-from-name \ Payload  
 postpone literal  
; immediate  

\ Host 
: sum ( seq -- n )  
 0 swap ['] + reduce  
; 
BRACKET-TICK ['] is the injector which compiles a 
literal of the XT following it. Note how the XT (ie, the 
Payload) needs to be accessible when ['] executes. 
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Another example is the word SELF, which is used within a 
quotation for self-reference. We saw it being used in 
building Smojo modules:

\ Injector (main) 
: (self) ( -- )  
 latestXT \ Payload  
 postpone literal  
; 

\ Injector (final) 
: self ( -- )  
 ` [ ` (self) ` ]  
; immediate  

\ Host 
: xyz ( -- XT )  
 [: 
  [ 0 , ]  
  self @  
   dup . cr   \ Print out  
   1 + self ! \ increment  
 ;]  
; 

\ TEST 
xyz => h  
h execute \ 0 
h execute \ 1 
h execute \ 2  

In this example, SELF is used to refer to the XT's data 
section. The Injector comes in two parts: The first part is 
just like an ordinary injector except that it is not 
immediate. The final part constructs the necessary 
environment for the injector to run correctly in 
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Quotations, and takes advantage of the special behaviour 
of [ and ] within quotations. The final injector part is 
always immediate. 

Quiz 3.3 

Quiz 3.3.0: Run this example, then try to explain 
the following: 

• What would happen if the injector SELF were not 
immediate?

• Why does (SELF) need to be ordinary? Hint: 
We've taken advantage of the behaviour of ` when 
it encounters ordinary words. 

• Why does SELF need to be split into two parts? 
Why not just put the contents of (SELF) into 
SELF? Try and see if that works. 

Quiz 3.3.1: Will SELF work within an ordinary word 
(ie, not a Quotation?) Test out your answer. If your 
answer is "no" then come up with a version of SELF 
(let's call it THIS) that works for ordinary words. 

Flow Control
An XT's code section is a sequence of operations.  These 
operations are each numbered with an address, starting 
from 0. Executing an XT causes Smojo to perform each 
operation beginning at address 0.

Flow control words allow us to alter the order in which 
these operations are performed, causing Smojo to jump to 
a particular address. 

There are 2 kinds of jumps: 
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1. IF creates a conditional jump, causing Smojo to 
jump to a given address if the top of stack evaluates to 
false.

2. AHEAD creates an unconditional jump, which causes 
Smojo to jump to a given address ahead with no pre-
conditions.

In the code below, the word HOT displays Hot ok if the 
input temperature is above :

: hot ( n -- )  
    29 > if  
        "Hot!"  
    else 
        "Cold"  
    then  
    . cr 
;  

see hot 
Which results in the following decompilation: 

[0] Literal(29)
[1] >
[2] CJump<5>
[3] Literal(Hot!)
[4] Jump<6>
[5] Literal(Cold)
[6} .
[7} CR
ok

The addresses are numbers on the left in brackets. You can 
see the IF has been transformed into a CJump<5> on 
address 2, which means a conditional jump to address 5. 
This means that the jump is made if the top of the data 
stack is false. Similarly, ELSE has been transformed into 
the operation on address 4, Jump<6> which is an 
unconditional jump to address 6.

29∘C
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Both IF and AHEAD are immediate words, which 
compile the respective Jump operation into the current 
word. At this point, this jump operation is unresolved (ie, 
the jump address is unknown). IF and AHEAD also place 
this jump operation on the data stack. In other words:

IF is ( -- jump ) and AHEAD ( -- jump ) 

All jump operations need to be resolved by 

THEN ( jump -- )

which sets the jump address, which is the location of 
THEN. THEN is also an immediate word.

As an example, suppose we are in the process of compiling 
the following fragment (note, we are in compilation 
mode):

IF "Hello" . THEN

For simplicity, say that IF is at address 0. When IF is 
compiled, the result is: 

Code (underlined = compiled): 

IF "Hello" . THEN

XT: 

[0] CJump<-1> 

Data Stack: 

<1> CJump<-1>

Note the CJump<-1> is the jump operator as an object on 
the stack and it has also been compiled into the XT. The 
jump address is -1 because this jump has not been resolved.  
That is the work of THEN. 

Then the phrase "Hello" . is compiled: 

Code (underlined = compiled): 

IF "Hello" . THEN
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XT: 

[0] CJump<-1>

[1] Literal(Hello)

[2} . 

Data Stack: 

<1> CJump<-1>

Note that the conditional jump is still unresolved at this 
point. Finally, the THEN is compiled: 

Code (underlined = compiled): 

IF "Hello" . THEN

XT: 

[0] CJump<3>

[1] Literal(Hello)

[2} . 

Data Stack: 

<0>

The conditional jump to address 3 might mean exiting the 
XT if 3 exceeds the length of the XT itself. 

Quiz 3.4 

Quiz 3.4.0: Run this example yourself by creating a 
new word and examine the decompilation. 

Quiz 3.4.1: How would you check the claim that IF 
and AHEAD both add a jump object on the data 
stack? 
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Compiling ELSE
Let's take another example ELSE, which is: 

: else ( cjump -- jump ) 
 ` ahead swap ` then 
; immediate 

and see how it is used to compile the following fragment: 

IF "A" . ELSE "B" . THEN 

Again, I'll assume we start from address 0:

Code (underlined = compiled): 

IF "A" . ELSE "B" . THEN

XT: 

[0] CJump<-1>

[1] Literal(A)

[2} .  

Data Stack: 

<1> CJump<-1>

Unrolling the definition for ELSE and remembering it is 
also an immediate word: 

Code (underlined = compiled): 

 IF "A" . ahead swap then "B" . THEN

XT: 

[0] CJump<-1> 

[1] Literal(A)

[2} .

[3] Jump<-1>

Data Stack: 
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<1> Jump<-1> CJump<-1>

Compiling the THEN from ELSE, note that this resolves 
the CJump first, because the SWAP placed it on the top of 
the stack. 

Code (underlined = compiled): 

 IF "A" . ahead swap then "B" . THEN

XT: 

[0] CJump<4> 

[1] Literal(A)

[2} .

[3] Jump<-1>

Data Stack: 

<1> Jump<-1>

Lastly, the rest of the code is compiled and the Jump can 
be resolved by the final THEN: 

Code (underlined = compiled): 

 IF "A" . ahead swap then "B" . THEN

XT: 

[0] CJump<4> 

[1] Literal(A)

[2} .

[3] Jump<6>

[4] Literal(B)

[5} . 
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Data Stack: 

<0>

The Big Four
It may surprise you to learn that Smojo has just four basic 
flow control words: IF, AHEAD, BEGIN and (THEN).

BEGIN ( -- n ) is an immediate word that puts its 
address on the stack. 

(THEN) ( jump n --  ) resolves a jump on the stack 
with the address n. 

All other flow words that you might have used like ELSE, 
->, |., AGAIN, UNTIL, EXIT etc. are actually built from 
the four basic words.

For example, EXIT can be written this way: 

: EXIT ( -- )  

 ` ahead 99999 ` (then)  

; immediate  

Quiz 3.5 

Quiz 3.5.0: Test out this version of EXIT. Why is 
the number 99999 used? Will a different number 
work? 

Quiz 3.5.1: Write THEN ( jump -- ) in terms of 
the Big Four. 

Quiz 3.5.2: Write AGAIN ( n -- ) in terms of the 
Big Four. Hint: AGAIN uses an unconditional jump.

Quiz 3.5.3: Write UNTIL ( n -- ) in terms of the 
Big Four. Hint: UNTIL uses a conditional jump.

Quiz 3.5.4: Write DO ... LOOP in terms of the Big 
Four. Hint: You could save the counter in the spare 
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stack. That is how it is done now. A better solution 
might be to use a variable. 
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