
In this session, we will cover a few seemingly disjoint
topics which complete our metaprogramming toolbox:

• The data section, especially for Quotations. We will
look at how the data section for Quotations can be set
using the COMMA , and [...] words, and how you can
access the data section using SELF. We will also look at
the definition of SELF. We will also see how the mode
switching words [and] are different from other
immediate words.

• LITERAL and how it is used in greater depth. There is a
very common design pattern using LITERAL, called the
Injector/Payload/Host pattern. Once you see this,
you can easily spot it in previous examples.

• Flow Control is how your program decides to perform
jumps and conditionals. We will look at the big 3 words
for creating flow control words: IF, AHEAD and THEN.

• Lastly, we will show you how you can add parsers (not
to be confused with the PARSE word) so you can
directly change Smojo's syntax. For example, we will see
how you can add rational numbers (like 1/2 or 3/4) to
extend Smojo's pre-built syntax for numbers.

The Data Section
Let's start with a review of the Data Section. As you now
know, Smojo words are just ("name", XT) pairs in Smojo's
dictionary. You can access these pairs using GET-
DICTIONARY (-- #).

Each XT has:

1

Metaprogramming II
The Data Section, Using Literal, Flow Control and Parsers

• a code section to store code that governs its behaviour.
This code section can be executed using the word
EXECUTE (xt --)

• a data section to store data for this XT. The data
section must be defined when the XT is being created.
Once created, the XT may no longer be amended. To
create the data section we use the COMMA , (v
--) operator. COMMA implicitly inserts the item on
the top of stack (v) into the word that is being created.

The data section is important since many
metaprogramming techniques depend on its use: In
Session 2's Example 4, when we built the module system,
usage of the data section was crucial.

Here's a simple example storing two numbers into a word
XYZ:

: xyz (--)
 [43 , 21 ,]
 "Hello World" . cr
;
\ Read the data section of XYZ:
' xyz 0 @ . cr \ 43 ok
' xyz 1 @ . cr \ 21 ok

Note that the phrase [43 , 21 ,] will run during
the creation of XYZ's XT, and this places 43 then 21 into
the data section of XYZ. This works because [...] are
both immediate words, and they switch modes temporarily
so that the , word can build the data section.

The FETCH word @ (xt n -- v) retrieves the value
v from the given XT. n is just the index needed. You can
omit n if it is zero. Eg,

' xyz @ . cr \ 43 ok -- no need for n

You can use the STORE ! (v xt n --) word to
store a new value into the slot n of an XT's data section:

123 ' xyz 0 ! \ Replace 43 with 123
2

' xyz @ . \ 123 ok

Note that you can only use ! to store data only if the slot
exists on the XT's data section. Otherwise you will get an
error. For example,

"abc" ' xyz 23 ! \ !ERROR!

will raise an error because slot 23 does not exist.

Quiz 3.0

Quiz 3.0.0: Run this example. Store a third value in
XYZ's data section.

Quiz 3.0.1: The number of items you can store in
the data section is fixed at creation time. Is this a
severe limitation? How might you change the
number of items stored in the data section even after
the XT is created? Hint: What data structures would
you use?

The pattern [value ,] can also be used in Quotations.
For example, suppose our XYX now makes an XT:

: xyz (-- xt)
 [:
 [43 , 21 ,]
 "Hello World" . cr
 ;]
;

\ Run XYZ to create the XT:
xyz => h
\ Read the data section of the XT:
h 0 @ . cr \ 43 ok
h 1 @ . cr \ 21 ok

3

Quiz 3.1

Quiz 3.1.0: Run this example. Replace the first slot
with a hash.

Quiz 3.1.1: If we ran XYZ twice, and saved the XTs
each time (say h1 and h2), would changing the first
slot value in h1 affect h2? Test this idea out with
some code to check your answer.

Quiz 3.1.2: Do you notice something strange about
our new XYZ? Hint: are [and] immediate words?
Run a decompilation of XYZ. What do you notice?

By right, immediate words should execute during
compilation mode. But in the example XYZ above, [and]
although they are immediate, do not execute during the
definition of XYZ! Instead, they are compiled.

This detail is very important: [and] in quotations are
only executed during the creation of the quotation, not
during its definition. In our example, the Quotation is
defined when XYZ is defined, but it is only created with
XYZ is being run.

This exception only applies to [and]. They are special.
All other immediate words are indeed executed when the
enclosing word is defined, as we would expect.

This exception to the behaviour of [and] allows us to
design the data section of quotation. Without it, we
cannot build data sections of quotations easily.

References
As you might have noted by now any locals used by word
are "frozen" when they are used in a quotation. For
example:

4

: mk-greet ("s" -- xt) { s }
 [:
 "Hello" . s .
 ;]
;

\ Run XYZ to create the XT:
"arnold" mk-greet => h
\ Run the XT:
h execute \ Hello arnold ok
\ Decompile the XT:
h decompile

Will result in the decompilation below:

[0] Literal(Hello)
[1} .
[2] Literal(arnold)
[3} .
ok

In this decompilation, you can see that the input string
"arnold" which was bound to the local s is now hard-
coded as a literal in the body of the resulting XT (line 2).

This behaviour, known as lexical binding is an important
feature because helps us avoid difficult bugs and has many
other benefits. But in many cases, we want to initialise a
local (eg, a counter), then change it in within the
quotation.

For example, suppose we want to create a quotation that
keeps track of how many times it is executed:

5

\ !WON'T WORK!
: xyz (-- xt)
 0 { n }
 [:
 "Hello" . n . cr
 n 1 + { n }
 ;]
;

xyz => h
h execute \ Hello 0
h execute \ Hello 0
h execute \ Hello 0

We would expect the counter to increase (eg, Hello 0,
Hello 1 and Hello 2), but this doesn't happen because
of lexical binding. A decompilation of h shows why:

[0] Literal(Hello)
[1} .
[2] Literal(0)
[3} .
[4} CR
[5] Literal(0)
[6] Literal(1)
[7] +
[8] write local: >n<
ok

Line 2 which we expect to print the local n will instead
show the literal 0 every time. There is a local n created on
the XT (line 8), but it is bound to the same value: 0 1 +
= 1, and this local is never used within the XT. All of this
is because of lexical binding.

To get around this, we can build something called a
reference. There are many ways to do this, but a simple
one is to utilise the data section of an XT:

6

: ref (v -- ref)

 [: [,] ;]

;

\ WORKS!
: xyz (-- xt)
 0 ref { n }
 [:
 "Hello" . n @ . cr
 n @ 1 + n !
 ;]
;

xyz => h
h execute \ Hello 0
h execute \ Hello 1
h execute \ Hello 2

REF (v -- XT) creates an XT with one item in its
data section, which is the input v of the reference.
Subsequently, even with lexical binding, we can still use @
and ! to fetch and store values into this XT.

Note: REF is a built-in word.

Quiz 3.2

Quiz 3.2.0: Run this example. How would you start
the counting at 1 instead of 0?

Quiz 3.2.1: Carefully study the definition of REF.
Do you understand how it works? If you do, propose
how you might find a different way to write REF
without using Quotations. What other changes
would you have to make? Write some code to test it
out.

7

Quiz 3.2.2: If we ran XYZ twice, and saved the XTs
each time (say a and b), would running a affect the
values printed by b? Test this idea out with some
code to check your answer.

Quiz 3.2.3: How might we re-write XYZ so that
running a would affect b and vice-versa? Ie,

a execute \ Hello 0

a execute \ Hello 1

b execute \ Hello 2 (not Hello 0)

a execute \ Hello 3 (not Hello 2).

Write your code and test to ensure it works. Hint:
You need to use the data section of XYZ.

Quiz 3.2.4: Is there another way to accomplish Quiz
3.2.3 without using the data section of XYZ? Hint:
You need to define a global variable.

Using LITERAL
One of the things that confuses beginners learning Smojo
metaprogramming is when and how to use LITERAL.

In almost every case I can think of, usage centres on a
simple design pattern called Injector/Payload/Host:

• The Payload is the literal that needs to be inserted.

• The Host is the word into which the literal Payload is
inserted into.

• The Injector is a word that actually injects the
Payload into the Host word. The Injector is always
immediate.

A typical use case is outlined below. In this example, the
payload is a string, "Hello World". In more realistic
scenarios, the payload will be far more useful.

8

\ Injector
: inject (--)
 "Hello World" \ Payload
 postpone literal
; immediate

\ Host
: host (--)
 "Hey" . cr
 inject . cr \ Injection done
;

In the code above, the three important things are:

1. The Injector is always immediate.

2. It always contains (or calls) a POSTPONE LITERAL

3. It somehow needs to have access to the Payload when
it is executed.

I'll give you two common examples of this pattern which
we've seen already in Session 2:

\ Injector
: ['] (|s --)
 bl parse xt-from-name \ Payload
 postpone literal
; immediate

\ Host
: sum (seq -- n)
 0 swap ['] + reduce
;
BRACKET-TICK ['] is the injector which compiles a
literal of the XT following it. Note how the XT (ie, the
Payload) needs to be accessible when ['] executes.

9

Another example is the word SELF, which is used within a
quotation for self-reference. We saw it being used in
building Smojo modules:

\ Injector (main)
: (self) (--)
 latestXT \ Payload
 postpone literal
;

\ Injector (final)
: self (--)
 ` [` (self) `]
; immediate

\ Host
: xyz (-- XT)
 [:
 [0 ,]
 self @
 dup . cr \ Print out
 1 + self ! \ increment
 ;]
;

\ TEST
xyz => h
h execute \ 0
h execute \ 1
h execute \ 2

In this example, SELF is used to refer to the XT's data
section. The Injector comes in two parts: The first part is
just like an ordinary injector except that it is not
immediate. The final part constructs the necessary
environment for the injector to run correctly in

10

Quotations, and takes advantage of the special behaviour
of [and] within quotations. The final injector part is
always immediate.

Quiz 3.3

Quiz 3.3.0: Run this example, then try to explain
the following:

• What would happen if the injector SELF were not
immediate?

• Why does (SELF) need to be ordinary? Hint:
We've taken advantage of the behaviour of ` when
it encounters ordinary words.

• Why does SELF need to be split into two parts?
Why not just put the contents of (SELF) into
SELF? Try and see if that works.

Quiz 3.3.1: Will SELF work within an ordinary word
(ie, not a Quotation?) Test out your answer. If your
answer is "no" then come up with a version of SELF
(let's call it THIS) that works for ordinary words.

Flow Control
An XT's code section is a sequence of operations. These
operations are each numbered with an address, starting
from 0. Executing an XT causes Smojo to perform each
operation beginning at address 0.

Flow control words allow us to alter the order in which
these operations are performed, causing Smojo to jump to
a particular address.

There are 2 kinds of jumps:

11

1. IF creates a conditional jump, causing Smojo to
jump to a given address if the top of stack evaluates to
false.

2. AHEAD creates an unconditional jump, which causes
Smojo to jump to a given address ahead with no pre-
conditions.

In the code below, the word HOT displays Hot ok if the
input temperature is above :

: hot (n --)
 29 > if
 "Hot!"
 else
 "Cold"
 then
 . cr
;

see hot
Which results in the following decompilation:

[0] Literal(29)
[1] >
[2] CJump<5>
[3] Literal(Hot!)
[4] Jump<6>
[5] Literal(Cold)
[6} .
[7} CR
ok

The addresses are numbers on the left in brackets. You can
see the IF has been transformed into a CJump<5> on
address 2, which means a conditional jump to address 5.
This means that the jump is made if the top of the data
stack is false. Similarly, ELSE has been transformed into
the operation on address 4, Jump<6> which is an
unconditional jump to address 6.

29∘C

12

Both IF and AHEAD are immediate words, which
compile the respective Jump operation into the current
word. At this point, this jump operation is unresolved (ie,
the jump address is unknown). IF and AHEAD also place
this jump operation on the data stack. In other words:

IF is (-- jump) and AHEAD (-- jump)

All jump operations need to be resolved by

THEN (jump --)

which sets the jump address, which is the location of
THEN. THEN is also an immediate word.

As an example, suppose we are in the process of compiling
the following fragment (note, we are in compilation
mode):

IF "Hello" . THEN

For simplicity, say that IF is at address 0. When IF is
compiled, the result is:

Code (underlined = compiled):

IF "Hello" . THEN

XT:

[0] CJump<-1>

Data Stack:

<1> CJump<-1>

Note the CJump<-1> is the jump operator as an object on
the stack and it has also been compiled into the XT. The
jump address is -1 because this jump has not been resolved.
That is the work of THEN.

Then the phrase "Hello" . is compiled:

Code (underlined = compiled):

IF "Hello" . THEN

13

XT:

[0] CJump<-1>

[1] Literal(Hello)

[2} .

Data Stack:

<1> CJump<-1>

Note that the conditional jump is still unresolved at this
point. Finally, the THEN is compiled:

Code (underlined = compiled):

IF "Hello" . THEN

XT:

[0] CJump<3>

[1] Literal(Hello)

[2} .

Data Stack:

<0>

The conditional jump to address 3 might mean exiting the
XT if 3 exceeds the length of the XT itself.

Quiz 3.4

Quiz 3.4.0: Run this example yourself by creating a
new word and examine the decompilation.

Quiz 3.4.1: How would you check the claim that IF
and AHEAD both add a jump object on the data
stack?

14

Compiling ELSE
Let's take another example ELSE, which is:

: else (cjump -- jump)
 ` ahead swap ` then
; immediate

and see how it is used to compile the following fragment:

IF "A" . ELSE "B" . THEN

Again, I'll assume we start from address 0:

Code (underlined = compiled):

IF "A" . ELSE "B" . THEN

XT:

[0] CJump<-1>

[1] Literal(A)

[2} .

Data Stack:

<1> CJump<-1>

Unrolling the definition for ELSE and remembering it is
also an immediate word:

Code (underlined = compiled):

 IF "A" . ahead swap then "B" . THEN

XT:

[0] CJump<-1>

[1] Literal(A)

[2} .

[3] Jump<-1>

Data Stack:
15

<1> Jump<-1> CJump<-1>

Compiling the THEN from ELSE, note that this resolves
the CJump first, because the SWAP placed it on the top of
the stack.

Code (underlined = compiled):

 IF "A" . ahead swap then "B" . THEN

XT:

[0] CJump<4>

[1] Literal(A)

[2} .

[3] Jump<-1>

Data Stack:

<1> Jump<-1>

Lastly, the rest of the code is compiled and the Jump can
be resolved by the final THEN:

Code (underlined = compiled):

 IF "A" . ahead swap then "B" . THEN

XT:

[0] CJump<4>

[1] Literal(A)

[2} .

[3] Jump<6>

[4] Literal(B)

[5} .

16

Data Stack:

<0>

The Big Four
It may surprise you to learn that Smojo has just four basic
flow control words: IF, AHEAD, BEGIN and (THEN).

BEGIN (-- n) is an immediate word that puts its
address on the stack.

(THEN) (jump n --) resolves a jump on the stack
with the address n.

All other flow words that you might have used like ELSE,
->, |., AGAIN, UNTIL, EXIT etc. are actually built from
the four basic words.

For example, EXIT can be written this way:

: EXIT (--)

 ` ahead 99999 ` (then)

; immediate

Quiz 3.5

Quiz 3.5.0: Test out this version of EXIT. Why is
the number 99999 used? Will a different number
work?

Quiz 3.5.1: Write THEN (jump --) in terms of
the Big Four.

Quiz 3.5.2: Write AGAIN (n --) in terms of the
Big Four. Hint: AGAIN uses an unconditional jump.

Quiz 3.5.3: Write UNTIL (n --) in terms of the
Big Four. Hint: UNTIL uses a conditional jump.

Quiz 3.5.4: Write DO ... LOOP in terms of the Big
Four. Hint: You could save the counter in the spare

17

stack. That is how it is done now. A better solution
might be to use a variable.

18

	Metaprogramming II
	The Data Section, Using Literal, Flow Control and Parsers
	The Data Section
	Quiz 3.0
	Quiz 3.1
	References
	Quiz 3.2
	Using LITERAL
	Quiz 3.3
	Flow Control
	Quiz 3.4
	Compiling ELSE
	The Big Four
	Quiz 3.5

