
Smojo has an important facility to let you amend it's
syntax. As a simple example, let's consider this piece of
code:

\ WON'T WORK!

1/2 3/4 +. .

In this program, we want Smojo to somehow recognise
fractions like 1/2 or 3/4. Parsers are the way to do this.

Note: Don't confuse this concept with the PARSE word!

First, you need to understand how Smojo processes tokens.

Processing the Token Stream
As you already know Smojo reads input code text as a
token stream, token by token. This causes the right-to-left
behaviour of Smojo.

But what happens once a token is read?

Here is some pseudocode to outline the process:

Step 1: Read in the next token, T. Note that T is a string.

Step 2.a: Check if T is an integer, real or string. This
check is done by directly examining the string T. For
example:

: integer? ("s" -- f) [regex] \d + ;

If T is an integer/real/string, then it is converted to an
actual object of the right type. Note that strings need to
be converted since the token read will have a surrounding
double-quote "..." , which has to be removed.

1

Parsers
Creating Custom Parsers

This resulting object is bound to a variable V, and we move
to Step 3.

Step 2.b: If the token T is not an integer/real/string, it is
assumed to represent a word. In this case the dictionary is
searched for the XT of T. This is done using xt-from-
name:

: xt-from-name ("T" -- xt | null)

 lcase get-dictionary #@

;

The resulting XT (or null value if it is not found) is then
bound to the variable V. In the case of a null value, the
system will warn the user with an error message saying "No
such word"

Step 3: What happens next depends on compilation mode
Smojo is in.

Step 3.a: In Compilation Mode:

(i) If V is an integer/real/string, it is added into a Literal
and this literal is compiled into the current word being
defined.

(ii)Otherwise V is an XT, and if it is immediate, it is
executed*. If not immediate, it is compiled directly into
the current word.

* Note: The mode switching words [and] are handled
slightly different if they are embedded in Quotations. This
has been discussed in Session 3. This exception is needed
for correctly initialising the data sections of Quotations.

Step 3.b In Interpretation Mode:

(i) If V is an integer/real/string, it is placed on the data
stack.

(ii)Otherwise (V is an XT), it is executed.

We then loop back to Step 1, and process the next token.

2

Parsers
Take the time to thoroughly understand Steps 1 - 3.

Parsers allow you to tap into this process by adding your
own custom processing right after Step 1 (the token being
read from the token stream) and before Step 2 (the token
being processed).

A parser is any XT which takes in a token (ie, string) and
returns a specific set of values:

 ("token" -- 0 | x 1 | -1)

• A return value of 0 means "ignore this token", ie, it will
not be processed further. None of the following steps 2
and 3 will be performed.

• A double value return of x 1 means use x as
transformed token, and continue downstream
processing, starting at Step 3.

• A value of -1 means use the token "as is", ie, continue
processing it as usual. Ie, processing of the token
resumes at Step 2 (or passed to the next parser to handle,
if there is more than one).

Finally, to register a parser to Smojo, we use

 +PARSER (xt --)

where xt is the parser you want to register. Similarly, you
can remove a parser using

 -PARSER (xt --)

Note that you can add as many parsers as you wish, but
they will run in the order they are added.

Example #1: Parsing Fractions
Let's go back to the program for adding fractions and get
it to work using parsers.

\ WE WANT TO MAKE THIS WORK!

1/2 3/4 +. .

3

We want this program to display either 1.25 (easy) or
5/4 (harder).

Let's tackle the easier option first. Essentially we need to
add a parser that checks if the token is indeed a fraction:

• If it is, it converts it into a real and uses the x 1 return.

• If it is not a fraction, we just return -1 to signal to Smojo
that the token needs to be processed by someone else.

The code:

: my-parser ("s" -- 0 | x 1 | -1) { s }
 s fraction? -> s to-real 1 exit |.
 -1
;
We need the words fraction? ("s" -- f) to
detect a fraction. This is easy enough, but you have to be
careful to handle negative numbers in the numerator:

: fraction? ("s" -- f)
 [regex] -?\d+/\d+
;
The word to-real ("s" -- n) converts a fraction
into a real number:

: to-real ("s" -- n)
 "/" tokenize { xs }
 xs 0 @@ int
 xs 1 @@ int /.
;
Lastly, we need a word to register my-parser into Smojo:

: use-fractions (--)
 ['] my-parser +parser
;
That's it! Now, we can use fractions in interpretation
mode:

4

use-fractions \ invoke the parser.
\ WORKS!!!
1/2 3/4 +. .
Will respond with:

1.25 ok

You can also test this out in compilation mode:

use-fractions
: xyz (--)
 7/2 -3/4 +. .
;
see xyz
Will respond with:

[0] Literal(3.5)
[1] Literal(-0.75)
[2] +.
[3} .
ok

Quiz 4.0

Quiz 4.0.0: Test out this code and ensure it works
for you.

Quiz 4.0.1: How would you implement the "harder"
option of displaying fractions?

Hint:

(i) You need to store fractions in a 2-tuple, to store
the numerator n and denominator d, (n,d)

(ii)Alter my-parser to convert integers into
fractions. Eg, 23 becomes (23,1)

(iii) Alter all integer arithmetic operations +, -, *
and / to handle these operations between tuples
of the form (n,d).

5

(iv) Add an explicit casting operator (real)
(tuple -- n) to convert a fraction into a
real.

Implement these suggestions and ensure your code
works.

Quiz 4.0.2: What are some drawbacks to the
solution of Quiz 4.0.1? Can these be mitigated?

6

	Parsers
	Creating Custom Parsers
	Processing the Token Stream
	Parsers
	Example #1: Parsing Fractions
	Quiz 4.0

