
The goal of this challenge is to write a cloud module
that enables code profiling. A code profiler allows
users to tell where their code spends the most time,
and how many times a word is called.

NOTE: Only attempt Challenge 1 after you
complete the Quizzes of Session 2.

John wants to profile his code. He wants to know:

(a) how many times one of his words is called,

(b) how much time is spent when in each word when
they are used in a program.

Quiz C.1.0: What data structure (sequence / tuple /
hash) is best suited to store this profile information?
Defend your answer.

Quiz C.1.1: Define a new variable to store this
information. Is it a local or global variable? Defend
your answer. Let's call this variable COUNT-INFO

Quiz C.1.2: To accomplish (a), you need to
increment a counter each time a word is called. You
do this by re-defining : (COLON). Some hints:

i) The word latestXT (-- xt) gives the XT of
the last word that was defined.

ii) name? (xt -- "s") gives the name of an
XT.

Use these to re-define the colon : and increment a
counter on COUNT-INFO.

1

Challenge 1
Building a Code Profiler

Quiz C.1.3: Write a word word-counts (--
) that returns the COUNT-INFO. Ensure it
returns a copy of COUNT-INFO by using the word
clone (x -- x).

Quiz C.1.4: Use your answer for PP in Session-1 to
write a word .word-counts (--) that nicely
prints the contents of COUNT-INFO.

Quiz C.1.5: The word now (-- n) gives the
current time in milliseconds. Use it to write a timer
to calculate how long Smojo spends in a word.

i) You need to also re-define the SEMICOLON ;
word. This is tricky as SEMICOLON is an
immediate word. You need to use postpone and
immediate.

ii) What kind of data structure will you use to store
timer information? Use a global variable called
TIMER-INFO to store this information. This should
be used to store two pieces of information for a
word: the start time and total elapsed time. The
start time is set to NOW each time a word is called
and the elapsed time calculated when the word ends,
either through ; or EXIT.

iii) Amend COLON : to start the timer. Your
amended SEMICOLON ; should stop the timer and
update the TIMER-INFO.

iv) Ensure your new SEMICOLON ; is an
immediate word.

Quiz C.1.6: Write a word word-times (--
) to return the TIMER-INFO. Also write a
word .WORD-TIMES (--) to print out the times
nicely.

Quiz C.1.7: Test out your profiler thoroughly! You
should be able to print out the counts and times of
new words.

2

Quiz C.1.8: Finally, package your profiler using a
cloud module:

 module *profiler

 \ Your code goes here

 end-module

 : profiler

 export: *profiler

 ;.

Once you run this code, it will publish your profiler
as username/profiler, where username is your
own username.

Important: Ensure that your profiler profiles both
counts and word times simultaneously.

Quiz C.1.9: In practice, we rarely want to profile all
words in a program, since this may slow down the
program unacceptably, and also because some words
might only take a small amount of time and so be
rounded down to zero. A better solution is to
selectively profile words.

To this end,

(i) create a word (PROFILE) (xt --) that
causes the given XT to become profiled.

(ii) remove the profiling code from ; and :, since all
profiling is done using (PROFILE).

(iii) create a word \PROFILE (--) that profiles
the latest XT. Define \PROFILE in terms of
(PROFILE).

3

For example:

: hello

	 "Hello World" . cr

; \profile

will cause just hello to be profiled, for both counts
and elapsed time.

4

	Challenge 1
	Building a Code Profiler

