
Arnold Doray - 6 Jan 2024

Project: Youtube
Summarizer Server
Microservice Deployment

Discussion

• Many microservices =
headache to startup.

• How to easily startup
microservices.

Starting Microservices

• Microservices often need to be started up in the right order, because they
depend on each other.

• We can’t easily use Bash because often times the libraries need to be
downloaded. It is hard to do this in Bash.

• Also, Bash isn’t good for distributed deployments.

• The task of getting your microservices started is called “deployment”.

• arnold/shell has a few powerful words to help you deploy your microservices.

• Our goal is to keep the settings and startup conditions of your application in a

single file.

• This makes deployment easy— just one command to run, (for now, if it’s on a

single machine, but we are working to expand this to multi-machine).

• It also means the deployment program is a one-stop-shop where all

knowledge of the deployment is stored.

*/shell words

• EXEC — runs a bash command

• RUN — runs a smojo microservice, taking care to wait

until it is fully compiled and running.

• ECHO — outputs text to the console

• All these words are substitution-enabled.

• Eg you can define any substitution word (— “s”) and

call it in the command using #{mysub}

• Lastly, USER sets the username, and can be accessed

through #{user} substitution.

• Insert these commands in words, as you see fit.

Example 1: Starting 2 services

• USER arnold

• ECHO ==== Starting Microservices ====

• EXEC pkill -f #{user}/ytsum

• EXEC mkdir -p ./logs/

• ECHO [Starting User Model]

• RUN #{user}/ytsum/users > ./logs/users.log

• ECHO [Starting Main Server]

• RUN #{user}/ytsum > ./logs/server.log

Example 2: Using substitution

0 variable TIME

: timer (—) now TIME ! ;

: elapsed (— “s”)

now TIME @ - 1000 / “ sec” concat ;

main

timer

ECHO This many seconds elapsed: #{elapsed}

;

Some Tips…
• Use hierarchical names (eg arnold/ytsum/user) so they can be easily

pkilled using the common prefix.

• Always log output from your microservices to aid debugging. This is
can really save your day!

• Put all your log files in the same place, eg ./logs/

• Use >> to append to a log file. Use this by default.

• Use > to overwrite a log file on restart. Only use this if you are

absolutely sure you won’t keep the logged output.

• Turn commonly used paths into substitutions. Eg #{logs}/queue.log
rather than ./logs/queue.log

• Of course, you need to define : logs (— “s”) …. ;

Homework
• Run ./smojo.sh -r arnold/queue/test to see a simple

deployment script in action.

• In the listing below, create the timer, elapsed, logs

and queue words

• Once this is tested out and works, refactor your

main, so that it calls other words that build up your
microservices.

• Eg, write an init-paths (—) word that runs the
EXEC mkdir -p … commands, and use in your
main.

• Write a complete deployment script for ytsum.

: main

 timer
 USER arnold
 ECHO ===== STARTING SERVER MICROSERVICES =====
 \ Stop all SDF processes.
 EXEC pkill -f #{user}/sdf/
 \ Make the "logs" folder if it does not already exist.
 EXEC mkdir -p #{logs}

 EXEC mkdir -p #{queue}
 \ Start the main Message Queue
 ECHO [Starting MQ Server]
 RUN #{user}/sdf/queue 4041 #{queue} > #{logs}/queue.log
 \ Start the test server.
 ECHO [Starting Test Server]
 RUN #{user}/sdf/queue/test 8080 4041 > #{logs}/test.log
 \ Start 2 test workers
 ECHO [Starting Test Worker #1]
 RUN #{user}/sdf/worker/poll/test "localhost" 4041 > #{logs}/worker-1.log
 ECHO [Starting Test Worker #2]
 RUN #{user}/sdf/worker/poll/test "localhost" 4041 > #{logs}/worker-2.log
 ECHO ===== DONE (#{elapsed}) =====
 \ Display the running processes.
 EXEC ps -x
;

