Project: Youtube
Summarizer Server

Downloading YT Transcripts

Arnold Doray - 9 Jan 2024

Discussion

* */net to download
synchronously

e */json to easily parse
JSON files

* The arnold/ytt library for
downloading transcripts.

Synchronous HTTP from */net

e HTTP-GET (“url” — “s”) for simple synchronous HTTP
downloading.

e HTTP-GET2 (“url” # — #) for downloading with a headers
#. This is needed to inject headers eg a secret key.
Response is stored under key “Response”.

* You can use special headers to prevent unauthorised
access 1o your server.

 There are also HTTP-POST and HTTP-POST?2
* You need to require arnold/net

Setting HTTP Parameters in */net

* You can add parameters prior to HTTP-XXX using PARAM (“key”
“value” —), instead of setting manually in the URL. These are
available on all subsequent HT TP-XXX calls.

* You can manually clear parameters sent using CLEAR-PARAMS

b

« USER-AGENT (“s” —) sets the user agent. Some servers require
you set this correctly.

e This can be a second layer of protection for your server against DOS
attacks: Check for the user agent and disregard if it is not valid.

Example 1: HTTP-GET

© main

"https://smojo.ai/" http-get .

* The page Is printed out.
* But if there is an error, it will say “null”

Example 2: HTTP-GET2

© maln

"https://smojo.ai/" # http-get2 { h }
h . cr
"Response” h #@ . cr

The response hash is printed out first.

The key/value pairs are entries in the incoming HTTP response, which
you can examine.

Many values are stored in tuples

The null key holds the main HTTP header response (eg 200 ok, 404, etc)
nis can be useful for diagnostics.

ne actual data is held under the key “Response” This can be null if
there is an error.

DEMO:
Using HTTP-GET and HTTP-
GET2

Parsing JSON responses with */json

 JSON is a widely used M2M data exchange format, esp in Al/ML.
* The Youtube transcript data is stored in both JSON and XML.

« JSON> (“s” — <json>) converts JSON text into a JSON object.

 The JSON object can be a #, a JSON array or a simple Smojo
string/integer/real

 JSON arrays can be converted to Smojo tuples using
JSON>ARRAY (<json> — tuple)

« >JSON (<json> — “s”) serializes a JSON object back into a
string.

Accessing data with */json

Most JSON documents are structured in a tree format.

[JPATH] (|s —) compiles a JSON Path to access a portion of the
document.

Eg:
[JPATH] name/id/version

Will access the name then id then version from the input JSSON
object.

You can use selectors if there are more than one option, eg:
[JPATH] namel[3]/id/version

will select the 4th name object from an array. (Index starts with 0)
You can also use function selectors, eg:

[JPATH] name/id/version|latest] will use the latest word to run
processing on the version nodes.

Example 3: JSON> and [JPATH]

require arnold/net
require arnold/json

© main

"https://app.smojo.org/arnold/net.json" http-get {1
json> [jpath] symbols/http-post . cr

2 ! 4

Step 1 - HITP-GET is used to download the JSON text
Step 2 - Convert this into JSON Object using JSON>

Step 3 - Access value of symbols/http-post using [JPATH]
Step 4 - Print it.

Example 4: Using selectors

require arnold/net
require arnold/json

. main

"https://app.smojo.org/arnold/net.json" http-get
json> [Jjpath] instructions|[Z25] . cr

2 ! 4

e Step 1-HITTP-GET is used to download the JSON text
o Step 2 - Convert this into JSON Obiject using JSON>

e Step 3 - Access 24th instruction using [JPATH]

o Step 4 - Print it.

Example 5: Using functional selectors

require arnold/net
require arnold/json

sum (json-array -- n
json>array array>seq
@ swap [: + ;] reduce

- main (

"https://app.smojo.org/arnold/net.json” http-get
json> [jpath] instructions[sum] . cr

* This example is atypical — usually you use a functional selector for selecting an
element not for transformation.

* We can write SUM outside of the JPATH here since it is the final step the JPATH

DEMO:
Using JSON> and [JPATH]

Downloading YT Transcripts

* You can easily download YT transcripts using */net
and */json

* |’ve translated some opensourced Python code into
Smojo:

» https://github.com/jdepoix/youtube-transcript-api
e arnold/ytt (YT Transcripts).
 Have shared the source code on my profile page.

https://github.com/jdepoix/youtube-transcript-api

Using arnold/ytt

» ytt.transcript.raw (“video-id” — “s”) grabs the raw XML file.

» ytt.transcript.timed (“video-id” — seq-#) grabs the data
iInto a sequence of #, each with time, duration & text.

e ytt.transcript.text (“video-id” — “s”) grabs the data into a
single string.

e yit.text (seg-# — “s”) converts a timed text into a single
string.

Example 6: Using YTT

require arnold/common
require arnold/ytt

. main
"mScpHTIi-kM" ytt.transcript.timed
. L1st

* This example prints out the timed text of the video
with Video ID mScpHTIi-kM

DEMO:
Using the YTT library

Homework Step 1: Writing the Database microservice

« Write a microservice database server backed by a phash that acts like a remote
hash, ie, it has 5 words db#!, db#@, db#drop, db#contains? and db#size

* Ensure that the dbase ONLY stores & fetches String values.
o EQg: db#! (“key” “value” “dbase-name” —)

 IMPORTANT: Use HTTP, not Smojo’s binary protocol (ie, dispatch http-server
bin-dispatch server)

« Write an asynchronous stub that serializes/deserializes objects prior to inserting/
fetching them into/from the dbase.

* The async stubs should have the format: xyz (* callback — async), where * is the
inputs. The callback should receive the input err true | value false.

* Hint: PACK BASEG64> (object — “s”) will serialize any object. Similarly, > BASE64
UNPACK (“s” — object) will deserialize any object. These words are found in */
java

» Write a second synchronous stub to read/write data synchronously using HTTP-
GET. Use the same serialization/deserialization words in this stub.

* The sync stub should have the format xyz (* — err true | value false)

Homework Step 2: Complete the YTT Download worker

 Complete the YTT download worker.
* Use an adaptive polling worker.
* The worker should:

1. Read the video id from the submitted queue of the
MQ server,

2. Download the timed transcript and

3. Save it as a key-value pair into the dbase named
“transcripts”, using the synchronous stub

* Be sure to handle the case where a transcript does not
exist. How is this indicated in the YTT library?

* Finally, update your deployment script to add all
additional microservices. It should “just work™

