
Arnold Doray - 9 Jan 2024

Project: Youtube
Summarizer Server
Downloading YT Transcripts

Discussion

• */net to download
synchronously

• */json to easily parse
JSON files

• The arnold/ytt library for
downloading transcripts.

Synchronous HTTP from */net

• HTTP-GET (“url” — “s”) for simple synchronous HTTP
downloading.

• HTTP-GET2 (“url” # — #) for downloading with a headers
#. This is needed to inject headers eg a secret key.
Response is stored under key “Response”.

• You can use special headers to prevent unauthorised
access to your server.

• There are also HTTP-POST and HTTP-POST2

• You need to require arnold/net

Setting HTTP Parameters in */net

• You can add parameters prior to HTTP-XXX using PARAM (“key”
“value” —), instead of setting manually in the URL. These are
available on all subsequent HTTP-XXX calls.

• You can manually clear parameters sent using CLEAR-PARAMS
(—)

• USER-AGENT (“s” —) sets the user agent. Some servers require
you set this correctly.

• This can be a second layer of protection for your server against DOS
attacks: Check for the user agent and disregard if it is not valid.

Example 1: HTTP-GET

• The page is printed out.

• But if there is an error, it will say “null”

Example 2: HTTP-GET2

• The response hash is printed out first.

• The key/value pairs are entries in the incoming HTTP response, which

you can examine.

• Many values are stored in tuples

• The null key holds the main HTTP header response (eg 200 ok, 404, etc)

This can be useful for diagnostics.

• The actual data is held under the key “Response” This can be null if

there is an error.

DEMO:
Using HTTP-GET and HTTP-

GET2

Parsing JSON responses with */json

• JSON is a widely used M2M data exchange format, esp in AI/ML.

• The Youtube transcript data is stored in both JSON and XML.

• JSON> (“s” — <json>) converts JSON text into a JSON object.

• The JSON object can be a #, a JSON array or a simple Smojo
string/integer/real

• JSON arrays can be converted to Smojo tuples using
JSON>ARRAY (<json> — tuple)

• >JSON (<json> — “s”) serializes a JSON object back into a
string.

Accessing data with */json
• Most JSON documents are structured in a tree format.

• [JPATH] (|s —) compiles a JSON Path to access a portion of the

document.

• Eg:

• [JPATH] name/id/version

• Will access the name then id then version from the input JSON

object.

• You can use selectors if there are more than one option, eg:

• [JPATH] name[3]/id/version

• will select the 4th name object from an array. (Index starts with 0)

• You can also use function selectors, eg:

• [JPATH] name/id/version[latest] will use the latest word to run

processing on the version nodes.

Example 3: JSON> and [JPATH]

• Step 1 - HTTP-GET is used to download the JSON text

• Step 2 - Convert this into JSON Object using JSON>

• Step 3 - Access value of symbols/http-post using [JPATH]

• Step 4 - Print it.

1

2 3 4

Example 4: Using selectors

• Step 1 - HTTP-GET is used to download the JSON text

• Step 2 - Convert this into JSON Object using JSON>

• Step 3 - Access 24th instruction using [JPATH]

• Step 4 - Print it.

1

2 3 4

Example 5: Using functional selectors

• This example is atypical — usually you use a functional selector for selecting an
element not for transformation.

• We can write SUM outside of the JPATH here since it is the final step the JPATH

DEMO:
Using JSON> and [JPATH]

Downloading YT Transcripts

• You can easily download YT transcripts using */net
and */json

• I’ve translated some opensourced Python code into
Smojo:

• https://github.com/jdepoix/youtube-transcript-api

• arnold/ytt (YT Transcripts).

• Have shared the source code on my profile page.

https://github.com/jdepoix/youtube-transcript-api

Using arnold/ytt

• ytt.transcript.raw (“video-id” — “s”) grabs the raw XML file.

• ytt.transcript.timed (“video-id” — seq-#) grabs the data
into a sequence of #, each with time, duration & text.

• ytt.transcript.text (“video-id” — “s”) grabs the data into a
single string.

• ytt.text (seq-# — “s”) converts a timed text into a single
string.

Example 6: Using YTT

• This example prints out the timed text of the video
with Video ID mScpHTIi-kM

DEMO:
Using the YTT library

Homework Step 1: Writing the Database microservice

• Write a microservice database server backed by a phash that acts like a remote
hash, ie, it has 5 words db#!, db#@, db#drop, db#contains? and db#size

• Ensure that the dbase ONLY stores & fetches String values.

• Eg: db#! (“key” “value” “dbase-name” —)

• IMPORTANT: Use HTTP, not Smojo’s binary protocol (ie, dispatch http-server not

bin-dispatch server)

• Write an asynchronous stub that serializes/deserializes objects prior to inserting/
fetching them into/from the dbase.

• The async stubs should have the format: xyz (* callback — async) , where * is the
inputs. The callback should receive the input err true | value false.

• Hint: PACK BASE64> (object — “s”) will serialize any object. Similarly, >BASE64
UNPACK (“s” — object) will deserialize any object. These words are found in */
java

• Write a second synchronous stub to read/write data synchronously using HTTP-
GET. Use the same serialization/deserialization words in this stub.

• The sync stub should have the format xyz (* — err true | value false)

Homework Step 2: Complete the YTT Download worker

• Complete the YTT download worker.

• Use an adaptive polling worker.

• The worker should:

1. Read the video id from the submitted queue of the
MQ server,

2. Download the timed transcript and

3. Save it as a key-value pair into the dbase named

“transcripts”, using the synchronous stub

• Be sure to handle the case where a transcript does not

exist. How is this indicated in the YTT library?

• Finally, update your deployment script to add all

additional microservices. It should “just work”

