
Arnold Doray - 5 Jan 2024

Project: Youtube
Summarizer Server
The Message Queue

Discussion

• Why downloading is
problematic in a mult-user
scenario

• Message Queues solution.

Downloading YT Transcripts

• All our code now (ie, our servers based on SmojoVM)
are event driven.

• Event Driven = Nothing is done except in response to
an external event.

• In our case, events are browser navigation to pages
on ytsum server, or

• ytsum getting/sending data from/to users or visitors
services.

• No code can run outside processing these events.

Example 1

• MY-PROCESSING is never run, since the system never
exits http-server

• It is very hard/impossible to run independent code for
data processing from a main that launches a server.

• For the same reason, you cannot run 2 servers in the
same main

Downloading YT Transcripts Synchronously

• One way to download anything from our event-driven
server is synchronously — ie, we immediately try to
download when the user generates a download event.

• This is VERY BAD because it causes the server to
block processing all other requests.

• Especially problematic for downloads that take time.

• Ytube may take 10-20 secs to respond to our server’s

download request.

• During this time, our server is blocked and will not

process any other requests. BAD!

Why Synchronous Downloading is Bad

User YTSum
Server Youtube

Download Event

Download Request

Response

Server cannot
process any

incoming user
requests during

this time!!

500 - 20,000 ms

Response

Preprocessing

Postprocessing

Message Queues

• A much better solution is to separate event generation
from their processing.

• A Message Queue (MQ) saves events (eg requests to
download)

• A Worker requests events from the MQ and processes
them.

• It saves processed data back onto a different queue on
the MQ, so other processes can read the processed data.

• Users can poll the system to determine status (or better,
use server-side notifications to push updates to the user).

Using a Message Queue + Workers

User YTSum
Server Youtube

Download Event

Response

500 - 20,000 ms

Get Next
Unprocessed

Task

MQ Worker

save request

Postprocessing

Preprocessing

Download

Response
Save Processed

Task

Server is free to
process other

events.

Message Queues + Workers

• We can spin up/spin down workers depending on
whether there is a lot of pending tasks to process.

• We have separate queues for submitted, pending
and complete tasks.

• Submitted = just submitted by YTSum server.

• Pending = being processed by a Worker.

• Complete = Task is completed.

• These queues can be implemented as a phash.

MQ Design Constraints

• MQs should be…

• data agnostic — queue operation should not require it

to understand the messages being received/sent.

• We use a stub serialize and deserialize data

automatically. The serialized data is a string, so MQ
only handles strings.

• The MQ should allow FIFO and LIFO operations.

• MQ will operate using HTTP, which is less efficient, but

easier to connect to other languages (eg curl, bash,
python, etc).

MQ Design

MQ
Server

Queues in several p#

YTSum
Server

MQ
Stub

MQ
Worker

Stub

Worker
Process

• MQ Server:

• smojo.sh -r arnold/sdf/queue port “basepath”

• MQ Stub: require arnold/sdf/queue/stub

smojo.sh -r arnold/sdf/queue 4041 “./queue/“

*/sdf/queue/worker/stub

*/sdf/worker/poll

*/sdf/queue/stub

Message Queue Stub Words
• queue.address! (“addr” port —) sets the location of the MQ server.

• queue.store (msg “queue” cb — async)

• Stores a message. msg is any object.

• The CB must be (msg f —), where f is true if we have an error and false if no error.

• The return value into the CB (ie, msg) is the new message ID.

• queue.first (“queue” cb — async)

• Returns the first item in the queue. The item is removed from MQ. This simulates a

stack (LIFO)

• queue.last (“queue” cb — async)

• Returns the last item in the queue. The item is removed from MQ. This simulates a

queue (FIFO)

• queue.size (“queue” cb — async) returns the size of the queue.

• queue.move (“id” “src” “dest” —) moves an id from one queue into another.

DEMO:
Starting & Using a MQ

MQ Workers
• Workers are not servers, but an ordinary infinite

loop.

• The loop polls the MQ at intervals.

• */sdf/queue/worker/stub is used to communicate

with MQ

• These are similar to */sdf/queue/stub, but no need

for callbacks, since workers are not servers.

• Eg,

• queue.store (msg “queue” — err true | msg false)

Poll Workers
• To write a worker, you can write an infinite loop directly (eg

using BEGIN…AGAIN), or

• Use */sdf/worker/poll which contains 2 types of poll
workers.

• worker.const (xt interval-millisec —) starts a poll worker
that polls at regular intervals.

• worker.adapt (xt tmin tmax —) starts an adaptive poll
worker. tmin/tmax are in millisec.

• XT needs to be written by yourself, and must be (— f) the
flag is a hint to tell the poll worker process if the polling
operation succeeded or not.

Example: Creating an adaptive Poll Worker

• PROCESS (— f) communicates with the MQ. Returns false if there
was no data. This helps the adaptive polling algorithm to determine
when to poll again.

• We started the poll worker with tmin = 100ms and tmax = 20,000ms

DEMO:
Writing an adaptive Poll

worker

Homework #1
• Write a new form (called add-link) that enables the user to

submit a link (any http link).

• Create a new page that displays this form. Call this page

“transcripts”

• This is the main page of YTSum once the user logs in. So,

ensure this page loads correctly after the user signs in.

• Use the */sdf/queue/stub and a callback to submit data

entered by the user from the add-link form to a queue
called ytsum.submitted.

• For now, when the form is submitted nothing is done on
the UI. Ensure that this is correct.

• Write a worker process that reads the MQ and simply
prints out the link.

