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Discussion

• Why downloading is 
problematic in a mult-user 
scenario


• Message Queues solution.



Downloading YT Transcripts

• All our code now (ie, our servers based on SmojoVM) 
are event driven. 


• Event Driven = Nothing is done except in response to 
an external event. 


• In our case, events are browser navigation to pages 
on ytsum server, or 


• ytsum getting/sending data from/to users or visitors 
services. 


• No code can run outside processing these events. 



Example 1

• MY-PROCESSING is never run, since the system never 
exits http-server


• It is very hard/impossible to run independent code for 
data processing from a main that launches a server. 


• For the same reason, you cannot run 2 servers in the 
same main 



Downloading YT Transcripts Synchronously

• One way to download anything from our event-driven 
server is synchronously — ie, we immediately try to 
download when the user generates a download event. 


• This is VERY BAD because it causes the server to 
block processing all other requests. 


• Especially problematic for downloads that take time.

• Ytube may take 10-20 secs to respond to our server’s 

download request. 

• During this time, our server is blocked and will not 

process any other requests. BAD! 
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Message Queues

• A much better solution is to separate event generation 
from their processing. 


• A Message Queue (MQ) saves events (eg requests to 
download) 


• A Worker requests events from the MQ and processes 
them. 


• It saves processed data back onto a different queue on 
the MQ, so other processes can read the processed data.


• Users can poll the system to determine status (or better, 
use server-side notifications to push updates to the user). 



Using a Message Queue + Workers
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Message Queues + Workers

• We can spin up/spin down workers depending on 
whether there is a lot of pending tasks to process. 


• We have separate queues for submitted, pending 
and complete tasks. 


• Submitted = just submitted by YTSum server. 

• Pending = being processed by a Worker. 

• Complete = Task is completed. 

• These queues can be implemented as a phash. 



MQ Design Constraints

• MQs should be…

• data agnostic — queue operation should not require it 

to understand the messages being received/sent.

• We use a stub serialize and deserialize data 

automatically. The serialized data is a string, so MQ 
only handles strings.


• The MQ should allow FIFO and LIFO operations. 

• MQ will operate using HTTP, which is less efficient, but 

easier to connect to other languages (eg curl, bash, 
python, etc). 



MQ Design
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• MQ Server: 

• smojo.sh -r arnold/sdf/queue port “basepath”

• MQ Stub: require arnold/sdf/queue/stub

smojo.sh -r arnold/sdf/queue 4041 “./queue/“

*/sdf/queue/worker/stub

*/sdf/worker/poll

*/sdf/queue/stub



Message Queue Stub Words
• queue.address! ( “addr” port — ) sets the location of the MQ server. 


• queue.store ( msg “queue” cb — async ) 

• Stores a message. msg is any object. 

• The CB must be ( msg f — ), where f is true if we have an error and false if no error.

• The return value into the CB (ie, msg) is the new message ID. 


• queue.first ( “queue” cb — async ) 

• Returns the first item in the queue. The item is removed from MQ. This simulates a 

stack (LIFO)

• queue.last ( “queue” cb — async ) 

• Returns the last item in the queue. The item is removed from MQ.  This simulates a 

queue (FIFO) 


• queue.size ( “queue” cb — async ) returns the size of the queue. 

• queue.move ( “id” “src” “dest” — ) moves an id from one queue into another. 



DEMO: 
Starting & Using a MQ



MQ Workers
• Workers are not servers, but an ordinary infinite 

loop. 

• The loop polls the MQ at intervals. 

• */sdf/queue/worker/stub is used to communicate 

with MQ

• These are similar to */sdf/queue/stub, but no need 

for callbacks, since workers are not servers. 

• Eg, 

• queue.store ( msg “queue” — err true | msg false ) 



Poll Workers
• To write a worker, you can write an infinite loop directly (eg 

using BEGIN…AGAIN), or


• Use */sdf/worker/poll which contains 2 types of poll 
workers.


• worker.const ( xt interval-millisec — ) starts a poll worker 
that polls at regular intervals. 


• worker.adapt ( xt tmin tmax — ) starts an adaptive poll 
worker. tmin/tmax are in millisec. 


• XT needs to be written by yourself, and must be ( — f ) the 
flag is a hint to tell the poll worker process if the polling 
operation succeeded or not. 



Example: Creating an adaptive Poll Worker

• PROCESS ( — f ) communicates with the MQ. Returns false if there 
was no data. This helps the adaptive polling algorithm to determine 
when to poll again. 


• We started the poll worker with tmin = 100ms and tmax = 20,000ms



DEMO: 
Writing an adaptive Poll 

worker



Homework #1
• Write a new form (called add-link) that enables the user to 

submit a link (any http link). 

• Create a new page that displays this form. Call this page 

“transcripts”

• This is the main page of YTSum once the user logs in. So, 

ensure this page loads correctly after the user signs in. 

• Use the */sdf/queue/stub and a callback to submit data 

entered by the user from the add-link form to a queue 
called ytsum.submitted. 


• For now, when the form is submitted nothing is done on 
the UI. Ensure that this is correct.  


• Write a worker process that reads the MQ and simply 
prints out the link. 


